Limits...
Plasticity of the Berry Ripening Program in a White Grape Variety.

Dal Santo S, Fasoli M, Negri S, D'Incà E, Vicenzi N, Guzzo F, Tornielli GB, Pezzotti M, Zenoni S - Front Plant Sci (2016)

Bottom Line: Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols.Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites.Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites.

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology, University of Verona Verona, Italy.

ABSTRACT
Grapevine (Vitis vinifera L.) is considered one of the most environmentally sensitive crops and is characterized by broad phenotypic plasticity, offering important advantages such as the large range of different wines that can be produced from the same cultivar, and the adaptation of existing cultivars to diverse growing regions. The uniqueness of berry quality traits reflects complex interactions between the grapevine plant and the combination of natural factors and human cultural practices which leads to the expression of wine typicity. Despite the scientific and commercial importance of genotype interactions with growing conditions, few studies have characterized the genes and metabolites directly involved in this phenomenon. Here, we used two large-scale analytical approaches to explore the metabolomic and transcriptomic basis of the broad phenotypic plasticity of Garganega, a white berry variety grown at four sites characterized by different pedoclimatic conditions (altitudes, soil texture, and composition). These conditions determine berry ripening dynamics in terms of sugar accumulation and the abundance of phenolic compounds. Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols. Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites. Many genes that control transcription, translation, transport, and carbohydrate metabolism showed different expression depending on the environmental conditions, indicating a key role in the observed transcriptomic plasticity of Garganega berries. Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites. The comparison of Garganega and Corvina berries showed that the metabolism of phenolic compounds is more plastic in ripening Garganega berries under different pedoclimatic conditions.

No MeSH data available.


Related in: MedlinePlus

Global gene expression trends in Garganega berries cultivated at four locations during ripening. (A) Variables and scores scatterplot of the PCA model (R2X = 0.748, Q2cum = 0.582) applied to the entire dataset. The expression profiles of genes positively (left) and negatively (right) correlated to the first (B) and second (C) principal components were selected within the first (positive) and the last (negative) percentile of each of the component loadings.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940403&req=5

Figure 5: Global gene expression trends in Garganega berries cultivated at four locations during ripening. (A) Variables and scores scatterplot of the PCA model (R2X = 0.748, Q2cum = 0.582) applied to the entire dataset. The expression profiles of genes positively (left) and negatively (right) correlated to the first (B) and second (C) principal components were selected within the first (positive) and the last (negative) percentile of each of the component loadings.

Mentions: Following microarray hybridization, the pericarp transcriptome dataset of the ripening Garganega berries was inspected by PCA, confirming the consistency of the biological replicates (Figure 5A). PC1 explained 27.6% of the total variability and was attributed to differences in the ripening stage among the samples. Despite the small difference in PC1 at the first sampling point, the dynamics of ripening differed among the vineyards at the level of the transcriptome (Figure 5A). In particular, VH1 was characterized by a clear interruption of the ripening process, whereas VH2 reached a more advanced ripening stage. These differences corresponded to the increase in °Brix values in the VH1 and VH2 vineyards (Figure 1C) and strongly suggested that VH1 never reached the “full ripening” stage.


Plasticity of the Berry Ripening Program in a White Grape Variety.

Dal Santo S, Fasoli M, Negri S, D'Incà E, Vicenzi N, Guzzo F, Tornielli GB, Pezzotti M, Zenoni S - Front Plant Sci (2016)

Global gene expression trends in Garganega berries cultivated at four locations during ripening. (A) Variables and scores scatterplot of the PCA model (R2X = 0.748, Q2cum = 0.582) applied to the entire dataset. The expression profiles of genes positively (left) and negatively (right) correlated to the first (B) and second (C) principal components were selected within the first (positive) and the last (negative) percentile of each of the component loadings.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940403&req=5

Figure 5: Global gene expression trends in Garganega berries cultivated at four locations during ripening. (A) Variables and scores scatterplot of the PCA model (R2X = 0.748, Q2cum = 0.582) applied to the entire dataset. The expression profiles of genes positively (left) and negatively (right) correlated to the first (B) and second (C) principal components were selected within the first (positive) and the last (negative) percentile of each of the component loadings.
Mentions: Following microarray hybridization, the pericarp transcriptome dataset of the ripening Garganega berries was inspected by PCA, confirming the consistency of the biological replicates (Figure 5A). PC1 explained 27.6% of the total variability and was attributed to differences in the ripening stage among the samples. Despite the small difference in PC1 at the first sampling point, the dynamics of ripening differed among the vineyards at the level of the transcriptome (Figure 5A). In particular, VH1 was characterized by a clear interruption of the ripening process, whereas VH2 reached a more advanced ripening stage. These differences corresponded to the increase in °Brix values in the VH1 and VH2 vineyards (Figure 1C) and strongly suggested that VH1 never reached the “full ripening” stage.

Bottom Line: Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols.Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites.Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites.

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology, University of Verona Verona, Italy.

ABSTRACT
Grapevine (Vitis vinifera L.) is considered one of the most environmentally sensitive crops and is characterized by broad phenotypic plasticity, offering important advantages such as the large range of different wines that can be produced from the same cultivar, and the adaptation of existing cultivars to diverse growing regions. The uniqueness of berry quality traits reflects complex interactions between the grapevine plant and the combination of natural factors and human cultural practices which leads to the expression of wine typicity. Despite the scientific and commercial importance of genotype interactions with growing conditions, few studies have characterized the genes and metabolites directly involved in this phenomenon. Here, we used two large-scale analytical approaches to explore the metabolomic and transcriptomic basis of the broad phenotypic plasticity of Garganega, a white berry variety grown at four sites characterized by different pedoclimatic conditions (altitudes, soil texture, and composition). These conditions determine berry ripening dynamics in terms of sugar accumulation and the abundance of phenolic compounds. Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols. Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites. Many genes that control transcription, translation, transport, and carbohydrate metabolism showed different expression depending on the environmental conditions, indicating a key role in the observed transcriptomic plasticity of Garganega berries. Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites. The comparison of Garganega and Corvina berries showed that the metabolism of phenolic compounds is more plastic in ripening Garganega berries under different pedoclimatic conditions.

No MeSH data available.


Related in: MedlinePlus