Limits...
Plasticity of the Berry Ripening Program in a White Grape Variety.

Dal Santo S, Fasoli M, Negri S, D'Incà E, Vicenzi N, Guzzo F, Tornielli GB, Pezzotti M, Zenoni S - Front Plant Sci (2016)

Bottom Line: Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols.Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites.Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites.

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology, University of Verona Verona, Italy.

ABSTRACT
Grapevine (Vitis vinifera L.) is considered one of the most environmentally sensitive crops and is characterized by broad phenotypic plasticity, offering important advantages such as the large range of different wines that can be produced from the same cultivar, and the adaptation of existing cultivars to diverse growing regions. The uniqueness of berry quality traits reflects complex interactions between the grapevine plant and the combination of natural factors and human cultural practices which leads to the expression of wine typicity. Despite the scientific and commercial importance of genotype interactions with growing conditions, few studies have characterized the genes and metabolites directly involved in this phenomenon. Here, we used two large-scale analytical approaches to explore the metabolomic and transcriptomic basis of the broad phenotypic plasticity of Garganega, a white berry variety grown at four sites characterized by different pedoclimatic conditions (altitudes, soil texture, and composition). These conditions determine berry ripening dynamics in terms of sugar accumulation and the abundance of phenolic compounds. Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols. Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites. Many genes that control transcription, translation, transport, and carbohydrate metabolism showed different expression depending on the environmental conditions, indicating a key role in the observed transcriptomic plasticity of Garganega berries. Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites. The comparison of Garganega and Corvina berries showed that the metabolism of phenolic compounds is more plastic in ripening Garganega berries under different pedoclimatic conditions.

No MeSH data available.


Related in: MedlinePlus

O2PLS-DA score plots and correlation loading plots for the metabolites detected by RP-HPLC-ESI-MS analysis. (A,B): AP and VP samples; (C,D): VH1 samples; (E,F): VH2 samples. Sample clusters and groups of metabolites are depicted in different colors as shown in the legend.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940403&req=5

Figure 4: O2PLS-DA score plots and correlation loading plots for the metabolites detected by RP-HPLC-ESI-MS analysis. (A,B): AP and VP samples; (C,D): VH1 samples; (E,F): VH2 samples. Sample clusters and groups of metabolites are depicted in different colors as shown in the legend.

Mentions: In order to find metabolites that characterized the various groups of samples, we applied a supervised O2PLS-DA approach (Figure 4). The plain vineyards were analyzed together due to their similar behavior in the PCA, and this revealed an enrichment of metabolites (especially hydroxycinnamates) during ripening, with the dihydroflavonols and flavonols becoming particularly characteristic of the AP vineyard at stage 4 (Figures 4A,B). The hillside vineyard VH1 showed the opposite trend, with many metabolites (particularly flavan-3-ols and their oligomers and phenolic acids) decreasing at the end of ripening. Dihydroflavonols and flavonols peaked during the third ripening stage and decreased toward the end of ripening, which is generally indicative of poor ripening and suggests that an unknown event inhibited the ripening process (Figures 4C,D). Flavan-3-ols and their oligomers characterized the first two ripening stages in the hillside vineyard VH2, but the dihydroflavonols and flavonols peaked during the third stage as described above (Figures 4E,F).


Plasticity of the Berry Ripening Program in a White Grape Variety.

Dal Santo S, Fasoli M, Negri S, D'Incà E, Vicenzi N, Guzzo F, Tornielli GB, Pezzotti M, Zenoni S - Front Plant Sci (2016)

O2PLS-DA score plots and correlation loading plots for the metabolites detected by RP-HPLC-ESI-MS analysis. (A,B): AP and VP samples; (C,D): VH1 samples; (E,F): VH2 samples. Sample clusters and groups of metabolites are depicted in different colors as shown in the legend.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940403&req=5

Figure 4: O2PLS-DA score plots and correlation loading plots for the metabolites detected by RP-HPLC-ESI-MS analysis. (A,B): AP and VP samples; (C,D): VH1 samples; (E,F): VH2 samples. Sample clusters and groups of metabolites are depicted in different colors as shown in the legend.
Mentions: In order to find metabolites that characterized the various groups of samples, we applied a supervised O2PLS-DA approach (Figure 4). The plain vineyards were analyzed together due to their similar behavior in the PCA, and this revealed an enrichment of metabolites (especially hydroxycinnamates) during ripening, with the dihydroflavonols and flavonols becoming particularly characteristic of the AP vineyard at stage 4 (Figures 4A,B). The hillside vineyard VH1 showed the opposite trend, with many metabolites (particularly flavan-3-ols and their oligomers and phenolic acids) decreasing at the end of ripening. Dihydroflavonols and flavonols peaked during the third ripening stage and decreased toward the end of ripening, which is generally indicative of poor ripening and suggests that an unknown event inhibited the ripening process (Figures 4C,D). Flavan-3-ols and their oligomers characterized the first two ripening stages in the hillside vineyard VH2, but the dihydroflavonols and flavonols peaked during the third stage as described above (Figures 4E,F).

Bottom Line: Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols.Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites.Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites.

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology, University of Verona Verona, Italy.

ABSTRACT
Grapevine (Vitis vinifera L.) is considered one of the most environmentally sensitive crops and is characterized by broad phenotypic plasticity, offering important advantages such as the large range of different wines that can be produced from the same cultivar, and the adaptation of existing cultivars to diverse growing regions. The uniqueness of berry quality traits reflects complex interactions between the grapevine plant and the combination of natural factors and human cultural practices which leads to the expression of wine typicity. Despite the scientific and commercial importance of genotype interactions with growing conditions, few studies have characterized the genes and metabolites directly involved in this phenomenon. Here, we used two large-scale analytical approaches to explore the metabolomic and transcriptomic basis of the broad phenotypic plasticity of Garganega, a white berry variety grown at four sites characterized by different pedoclimatic conditions (altitudes, soil texture, and composition). These conditions determine berry ripening dynamics in terms of sugar accumulation and the abundance of phenolic compounds. Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols. Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites. Many genes that control transcription, translation, transport, and carbohydrate metabolism showed different expression depending on the environmental conditions, indicating a key role in the observed transcriptomic plasticity of Garganega berries. Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites. The comparison of Garganega and Corvina berries showed that the metabolism of phenolic compounds is more plastic in ripening Garganega berries under different pedoclimatic conditions.

No MeSH data available.


Related in: MedlinePlus