Limits...
No Interrelation of Motor Planning and Executive Functions across Young Ages.

Wunsch K, Pfister R, Henning A, Aschersleben G, Weigelt M - Front Psychol (2016)

Bottom Line: To this end, we tested 217 participants with three motor tasks, measuring anticipatory planning abilities (i.e., the bar-transport-task, the sword-rotation-task and the grasp-height-task), and three cognitive tasks, measuring executive functions (i.e., the Tower-of-Hanoi-task, the Mosaic-task, and the D2-attention-endurance-task).Children were aged between 3 and 10 years and were separated into age groups by 1-year bins, resulting in a total of eight groups of children and an additional group of adults.These results suggest that both, motor planning and executive functions are rather heterogeneous domains of cognitive functioning with fewer interdependencies than often suggested.

View Article: PubMed Central - PubMed

Affiliation: Institute of Sport and Sport Science, University of Freiburg Freiburg, Germany.

ABSTRACT
The present study examined the developmental trajectories of motor planning and executive functioning in children. To this end, we tested 217 participants with three motor tasks, measuring anticipatory planning abilities (i.e., the bar-transport-task, the sword-rotation-task and the grasp-height-task), and three cognitive tasks, measuring executive functions (i.e., the Tower-of-Hanoi-task, the Mosaic-task, and the D2-attention-endurance-task). Children were aged between 3 and 10 years and were separated into age groups by 1-year bins, resulting in a total of eight groups of children and an additional group of adults. Results suggested (1) a positive developmental trajectory for each of the sub-tests, with better task performance as children get older; (2) that the performance in the separate tasks was not correlated across participants in the different age groups; and (3) that there was no relationship between performance in the motor tasks and in the cognitive tasks used in the present study when controlling for age. These results suggest that both, motor planning and executive functions are rather heterogeneous domains of cognitive functioning with fewer interdependencies than often suggested.

No MeSH data available.


Overview of the tasks used in the study and corresponding action outcomes for the motor tasks. (A) bar-transport-task, (B) sword-rotation- task, (C) grasp-height-task, (D) Tower-of-Hanoi-task, (E) Mosaic-task, (F1) D2-task for preschoolers, (F2) D2-task for school children, (F3) D2-task for adults.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940395&req=5

Figure 1: Overview of the tasks used in the study and corresponding action outcomes for the motor tasks. (A) bar-transport-task, (B) sword-rotation- task, (C) grasp-height-task, (D) Tower-of-Hanoi-task, (E) Mosaic-task, (F1) D2-task for preschoolers, (F2) D2-task for school children, (F3) D2-task for adults.

Mentions: Since its discovery two decades ago (Rosenbaum et al., 1990), a growing body of research has documented the ESC effect as a robust phenomenon for healthy adults, as well as for different clinical populations (see Rosenbaum et al., 2012, for a review). Moreover, ESC effects also seem to arise in different non-human animals, (e.g., Zander et al., 2013). Similar anticipatory planning skills also become evident using other measures than the described bar-transport-task and its conceptual replications (see Figures 1A,B). One example for such additional measures is the grasp-height effect (Figure 1C). Here, anticipatory planning is probed by asking participants to put objects onto shelves of varying height. When placing objects on a high shelf, people grasp the object at its lower end. Conversely, when it has to be placed on a low shelf, they grasp the object at its upper end. Both actions result in a maximally comfortable position. Therefore, the future position of an object, which should be placed onto targets of varying heights, is also anticipated (Cohen and Rosenbaum, 2004).


No Interrelation of Motor Planning and Executive Functions across Young Ages.

Wunsch K, Pfister R, Henning A, Aschersleben G, Weigelt M - Front Psychol (2016)

Overview of the tasks used in the study and corresponding action outcomes for the motor tasks. (A) bar-transport-task, (B) sword-rotation- task, (C) grasp-height-task, (D) Tower-of-Hanoi-task, (E) Mosaic-task, (F1) D2-task for preschoolers, (F2) D2-task for school children, (F3) D2-task for adults.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940395&req=5

Figure 1: Overview of the tasks used in the study and corresponding action outcomes for the motor tasks. (A) bar-transport-task, (B) sword-rotation- task, (C) grasp-height-task, (D) Tower-of-Hanoi-task, (E) Mosaic-task, (F1) D2-task for preschoolers, (F2) D2-task for school children, (F3) D2-task for adults.
Mentions: Since its discovery two decades ago (Rosenbaum et al., 1990), a growing body of research has documented the ESC effect as a robust phenomenon for healthy adults, as well as for different clinical populations (see Rosenbaum et al., 2012, for a review). Moreover, ESC effects also seem to arise in different non-human animals, (e.g., Zander et al., 2013). Similar anticipatory planning skills also become evident using other measures than the described bar-transport-task and its conceptual replications (see Figures 1A,B). One example for such additional measures is the grasp-height effect (Figure 1C). Here, anticipatory planning is probed by asking participants to put objects onto shelves of varying height. When placing objects on a high shelf, people grasp the object at its lower end. Conversely, when it has to be placed on a low shelf, they grasp the object at its upper end. Both actions result in a maximally comfortable position. Therefore, the future position of an object, which should be placed onto targets of varying heights, is also anticipated (Cohen and Rosenbaum, 2004).

Bottom Line: To this end, we tested 217 participants with three motor tasks, measuring anticipatory planning abilities (i.e., the bar-transport-task, the sword-rotation-task and the grasp-height-task), and three cognitive tasks, measuring executive functions (i.e., the Tower-of-Hanoi-task, the Mosaic-task, and the D2-attention-endurance-task).Children were aged between 3 and 10 years and were separated into age groups by 1-year bins, resulting in a total of eight groups of children and an additional group of adults.These results suggest that both, motor planning and executive functions are rather heterogeneous domains of cognitive functioning with fewer interdependencies than often suggested.

View Article: PubMed Central - PubMed

Affiliation: Institute of Sport and Sport Science, University of Freiburg Freiburg, Germany.

ABSTRACT
The present study examined the developmental trajectories of motor planning and executive functioning in children. To this end, we tested 217 participants with three motor tasks, measuring anticipatory planning abilities (i.e., the bar-transport-task, the sword-rotation-task and the grasp-height-task), and three cognitive tasks, measuring executive functions (i.e., the Tower-of-Hanoi-task, the Mosaic-task, and the D2-attention-endurance-task). Children were aged between 3 and 10 years and were separated into age groups by 1-year bins, resulting in a total of eight groups of children and an additional group of adults. Results suggested (1) a positive developmental trajectory for each of the sub-tests, with better task performance as children get older; (2) that the performance in the separate tasks was not correlated across participants in the different age groups; and (3) that there was no relationship between performance in the motor tasks and in the cognitive tasks used in the present study when controlling for age. These results suggest that both, motor planning and executive functions are rather heterogeneous domains of cognitive functioning with fewer interdependencies than often suggested.

No MeSH data available.