Limits...
Geometric Constraints on Human Speech Sound Inventories.

Dunbar E, Dupoux E - Front Psychol (2016)

Bottom Line: We investigate the idea that the languages of the world have developed coherent sound systems in which having one sound increases or decreases the chances of having certain other sounds, depending on shared properties of those sounds.We document three typological tendencies in sound system geometries: economy, a tendency for the differences between sounds in a system to be definable on a relatively small number of independent dimensions; local symmetry, a tendency for sound systems to have relatively large numbers of pairs of sounds that differ only on one dimension; and global symmetry, a tendency for sound systems to be relatively balanced.We also investigate the relation between the typology of inventory geometries and the typology of individual sounds, showing that the frequency distribution with which individual sounds occur across languages works in favor of both local and global symmetry.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Sciences Cognitives et Psycholinguistique (ENS-EHESS-Centre National de la Recherche Scientifique), Département des Études Cognitives, École Normale Supérieure-PSL Research University Paris, France.

ABSTRACT
We investigate the idea that the languages of the world have developed coherent sound systems in which having one sound increases or decreases the chances of having certain other sounds, depending on shared properties of those sounds. We investigate the geometries of sound systems that are defined by the inherent properties of sounds. We document three typological tendencies in sound system geometries: economy, a tendency for the differences between sounds in a system to be definable on a relatively small number of independent dimensions; local symmetry, a tendency for sound systems to have relatively large numbers of pairs of sounds that differ only on one dimension; and global symmetry, a tendency for sound systems to be relatively balanced. The finding of economy corroborates previous results; the two symmetry properties have not been previously documented. We also investigate the relation between the typology of inventory geometries and the typology of individual sounds, showing that the frequency distribution with which individual sounds occur across languages works in favor of both local and global symmetry.

No MeSH data available.


Related in: MedlinePlus

The vowel inventories of Umbundu (left) vs. Bukiyip (right). The two inventories have the same size and number of non-redundant features (and therefore degree of economy), but differ in how many oppositions they have, that is, pairs of sounds that are distinguished only by one feature dimension, shown as dark blue lines (seven vs. ten). The vowel inventory of Bukiyip thus has higher local symmetry than that of Umbundu.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940385&req=5

Figure 2: The vowel inventories of Umbundu (left) vs. Bukiyip (right). The two inventories have the same size and number of non-redundant features (and therefore degree of economy), but differ in how many oppositions they have, that is, pairs of sounds that are distinguished only by one feature dimension, shown as dark blue lines (seven vs. ten). The vowel inventory of Bukiyip thus has higher local symmetry than that of Umbundu.

Mentions: The vowel inventory of Umbundu (Niger-Congo, Angola) has lower local symmetry than the vowel inventory of Bukiyip (Torricelli, Papua New Guinea), as shown in Figure 2, where each opposition is shown as a dark blue edge on a hypercube. In an idealized space in which each dimension has only two possible values, the distance between two sounds can be defined as the number of dimensions on which the two sounds are different (the rectilinear or “city block” distance in that space). The local symmetry of an inventory is defined in terms of the total number of sound pairs with distance equal to 1, or, equivalently, the number of occupied edges in the hypercube.


Geometric Constraints on Human Speech Sound Inventories.

Dunbar E, Dupoux E - Front Psychol (2016)

The vowel inventories of Umbundu (left) vs. Bukiyip (right). The two inventories have the same size and number of non-redundant features (and therefore degree of economy), but differ in how many oppositions they have, that is, pairs of sounds that are distinguished only by one feature dimension, shown as dark blue lines (seven vs. ten). The vowel inventory of Bukiyip thus has higher local symmetry than that of Umbundu.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940385&req=5

Figure 2: The vowel inventories of Umbundu (left) vs. Bukiyip (right). The two inventories have the same size and number of non-redundant features (and therefore degree of economy), but differ in how many oppositions they have, that is, pairs of sounds that are distinguished only by one feature dimension, shown as dark blue lines (seven vs. ten). The vowel inventory of Bukiyip thus has higher local symmetry than that of Umbundu.
Mentions: The vowel inventory of Umbundu (Niger-Congo, Angola) has lower local symmetry than the vowel inventory of Bukiyip (Torricelli, Papua New Guinea), as shown in Figure 2, where each opposition is shown as a dark blue edge on a hypercube. In an idealized space in which each dimension has only two possible values, the distance between two sounds can be defined as the number of dimensions on which the two sounds are different (the rectilinear or “city block” distance in that space). The local symmetry of an inventory is defined in terms of the total number of sound pairs with distance equal to 1, or, equivalently, the number of occupied edges in the hypercube.

Bottom Line: We investigate the idea that the languages of the world have developed coherent sound systems in which having one sound increases or decreases the chances of having certain other sounds, depending on shared properties of those sounds.We document three typological tendencies in sound system geometries: economy, a tendency for the differences between sounds in a system to be definable on a relatively small number of independent dimensions; local symmetry, a tendency for sound systems to have relatively large numbers of pairs of sounds that differ only on one dimension; and global symmetry, a tendency for sound systems to be relatively balanced.We also investigate the relation between the typology of inventory geometries and the typology of individual sounds, showing that the frequency distribution with which individual sounds occur across languages works in favor of both local and global symmetry.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Sciences Cognitives et Psycholinguistique (ENS-EHESS-Centre National de la Recherche Scientifique), Département des Études Cognitives, École Normale Supérieure-PSL Research University Paris, France.

ABSTRACT
We investigate the idea that the languages of the world have developed coherent sound systems in which having one sound increases or decreases the chances of having certain other sounds, depending on shared properties of those sounds. We investigate the geometries of sound systems that are defined by the inherent properties of sounds. We document three typological tendencies in sound system geometries: economy, a tendency for the differences between sounds in a system to be definable on a relatively small number of independent dimensions; local symmetry, a tendency for sound systems to have relatively large numbers of pairs of sounds that differ only on one dimension; and global symmetry, a tendency for sound systems to be relatively balanced. The finding of economy corroborates previous results; the two symmetry properties have not been previously documented. We also investigate the relation between the typology of inventory geometries and the typology of individual sounds, showing that the frequency distribution with which individual sounds occur across languages works in favor of both local and global symmetry.

No MeSH data available.


Related in: MedlinePlus