Limits...
Geometric Constraints on Human Speech Sound Inventories.

Dunbar E, Dupoux E - Front Psychol (2016)

Bottom Line: We investigate the idea that the languages of the world have developed coherent sound systems in which having one sound increases or decreases the chances of having certain other sounds, depending on shared properties of those sounds.We document three typological tendencies in sound system geometries: economy, a tendency for the differences between sounds in a system to be definable on a relatively small number of independent dimensions; local symmetry, a tendency for sound systems to have relatively large numbers of pairs of sounds that differ only on one dimension; and global symmetry, a tendency for sound systems to be relatively balanced.We also investigate the relation between the typology of inventory geometries and the typology of individual sounds, showing that the frequency distribution with which individual sounds occur across languages works in favor of both local and global symmetry.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Sciences Cognitives et Psycholinguistique (ENS-EHESS-Centre National de la Recherche Scientifique), Département des Études Cognitives, École Normale Supérieure-PSL Research University Paris, France.

ABSTRACT
We investigate the idea that the languages of the world have developed coherent sound systems in which having one sound increases or decreases the chances of having certain other sounds, depending on shared properties of those sounds. We investigate the geometries of sound systems that are defined by the inherent properties of sounds. We document three typological tendencies in sound system geometries: economy, a tendency for the differences between sounds in a system to be definable on a relatively small number of independent dimensions; local symmetry, a tendency for sound systems to have relatively large numbers of pairs of sounds that differ only on one dimension; and global symmetry, a tendency for sound systems to be relatively balanced. The finding of economy corroborates previous results; the two symmetry properties have not been previously documented. We also investigate the relation between the typology of inventory geometries and the typology of individual sounds, showing that the frequency distribution with which individual sounds occur across languages works in favor of both local and global symmetry.

No MeSH data available.


Related in: MedlinePlus

Two stages in the history of a hypothetical language, illustrating the notion of economy as a geometric property of sound systems. Four idealized articulatory parameters are shown: place of articulation ([b], [p], [f], and [m] are made with constriction at the lips, while [s] and [z] are made by placing the tongue just above and behind the upper teeth); voicing ([b], [m], and [z] are made with vibration of the vocal cords, while [f] and [s] are without); nasal vs. oral airflow ([m] is made with the velum lowered so that air passes through the nose, while the other sounds are made with the velum raised, allowing airflow only in the mouth); and stop vs. fricative constriction ([b], [p], and [m] are made by totally blocking the flow of air through the mouth, while [f], [s], and [z] allow air to pass through a narrow opening and create noise). At Stage 1, the hypothetical language loses [m], increasing economy by eliminating one of the articulatory degrees of freedom of the inventory. At Stage 2, the language gains [z], increasing economy by making more use of the three remaining dimensions. The hypercube shown is a graph where the edges marked are between pairs of sounds of distance one in an idealized binary articulatory space. The remaining unsaturated edges of the interior and exterior cubes have also been added for clarity.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940385&req=5

Figure 1: Two stages in the history of a hypothetical language, illustrating the notion of economy as a geometric property of sound systems. Four idealized articulatory parameters are shown: place of articulation ([b], [p], [f], and [m] are made with constriction at the lips, while [s] and [z] are made by placing the tongue just above and behind the upper teeth); voicing ([b], [m], and [z] are made with vibration of the vocal cords, while [f] and [s] are without); nasal vs. oral airflow ([m] is made with the velum lowered so that air passes through the nose, while the other sounds are made with the velum raised, allowing airflow only in the mouth); and stop vs. fricative constriction ([b], [p], and [m] are made by totally blocking the flow of air through the mouth, while [f], [s], and [z] allow air to pass through a narrow opening and create noise). At Stage 1, the hypothetical language loses [m], increasing economy by eliminating one of the articulatory degrees of freedom of the inventory. At Stage 2, the language gains [z], increasing economy by making more use of the three remaining dimensions. The hypercube shown is a graph where the edges marked are between pairs of sounds of distance one in an idealized binary articulatory space. The remaining unsaturated edges of the interior and exterior cubes have also been added for clarity.

Mentions: The geometric properties of an inventory are those properties that can be stated in terms of the relations between the sounds in the inventory, abstracting away from what the actual sounds are. Figure 1 illustrates the geometric notion of economy, proposed by Martinet (1939) as a property influencing how inventories change over time. When a language loses, gains, or changes the pronounciation of a sound, the result may make more efficient, or economical, use of the dimensions on which sounds vary in the inventory. In Figure 1, the hypothetical language loses [m], making all remaining consonants oral rather than nasal, removing all variability on the nasal/oral dimension. Although the number of sounds is smaller overall, it is now bigger relative to the number of distinct sounds that can be generated on these remaining three dimensions of variability (lips vs. tongue tip as place of articulation, voicing, stop vs. fricative: eight possible segments). The hypothetical inventory might then gain [z], which can be produced by varying only these three dimensions, making still better use of them.


Geometric Constraints on Human Speech Sound Inventories.

Dunbar E, Dupoux E - Front Psychol (2016)

Two stages in the history of a hypothetical language, illustrating the notion of economy as a geometric property of sound systems. Four idealized articulatory parameters are shown: place of articulation ([b], [p], [f], and [m] are made with constriction at the lips, while [s] and [z] are made by placing the tongue just above and behind the upper teeth); voicing ([b], [m], and [z] are made with vibration of the vocal cords, while [f] and [s] are without); nasal vs. oral airflow ([m] is made with the velum lowered so that air passes through the nose, while the other sounds are made with the velum raised, allowing airflow only in the mouth); and stop vs. fricative constriction ([b], [p], and [m] are made by totally blocking the flow of air through the mouth, while [f], [s], and [z] allow air to pass through a narrow opening and create noise). At Stage 1, the hypothetical language loses [m], increasing economy by eliminating one of the articulatory degrees of freedom of the inventory. At Stage 2, the language gains [z], increasing economy by making more use of the three remaining dimensions. The hypercube shown is a graph where the edges marked are between pairs of sounds of distance one in an idealized binary articulatory space. The remaining unsaturated edges of the interior and exterior cubes have also been added for clarity.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940385&req=5

Figure 1: Two stages in the history of a hypothetical language, illustrating the notion of economy as a geometric property of sound systems. Four idealized articulatory parameters are shown: place of articulation ([b], [p], [f], and [m] are made with constriction at the lips, while [s] and [z] are made by placing the tongue just above and behind the upper teeth); voicing ([b], [m], and [z] are made with vibration of the vocal cords, while [f] and [s] are without); nasal vs. oral airflow ([m] is made with the velum lowered so that air passes through the nose, while the other sounds are made with the velum raised, allowing airflow only in the mouth); and stop vs. fricative constriction ([b], [p], and [m] are made by totally blocking the flow of air through the mouth, while [f], [s], and [z] allow air to pass through a narrow opening and create noise). At Stage 1, the hypothetical language loses [m], increasing economy by eliminating one of the articulatory degrees of freedom of the inventory. At Stage 2, the language gains [z], increasing economy by making more use of the three remaining dimensions. The hypercube shown is a graph where the edges marked are between pairs of sounds of distance one in an idealized binary articulatory space. The remaining unsaturated edges of the interior and exterior cubes have also been added for clarity.
Mentions: The geometric properties of an inventory are those properties that can be stated in terms of the relations between the sounds in the inventory, abstracting away from what the actual sounds are. Figure 1 illustrates the geometric notion of economy, proposed by Martinet (1939) as a property influencing how inventories change over time. When a language loses, gains, or changes the pronounciation of a sound, the result may make more efficient, or economical, use of the dimensions on which sounds vary in the inventory. In Figure 1, the hypothetical language loses [m], making all remaining consonants oral rather than nasal, removing all variability on the nasal/oral dimension. Although the number of sounds is smaller overall, it is now bigger relative to the number of distinct sounds that can be generated on these remaining three dimensions of variability (lips vs. tongue tip as place of articulation, voicing, stop vs. fricative: eight possible segments). The hypothetical inventory might then gain [z], which can be produced by varying only these three dimensions, making still better use of them.

Bottom Line: We investigate the idea that the languages of the world have developed coherent sound systems in which having one sound increases or decreases the chances of having certain other sounds, depending on shared properties of those sounds.We document three typological tendencies in sound system geometries: economy, a tendency for the differences between sounds in a system to be definable on a relatively small number of independent dimensions; local symmetry, a tendency for sound systems to have relatively large numbers of pairs of sounds that differ only on one dimension; and global symmetry, a tendency for sound systems to be relatively balanced.We also investigate the relation between the typology of inventory geometries and the typology of individual sounds, showing that the frequency distribution with which individual sounds occur across languages works in favor of both local and global symmetry.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Sciences Cognitives et Psycholinguistique (ENS-EHESS-Centre National de la Recherche Scientifique), Département des Études Cognitives, École Normale Supérieure-PSL Research University Paris, France.

ABSTRACT
We investigate the idea that the languages of the world have developed coherent sound systems in which having one sound increases or decreases the chances of having certain other sounds, depending on shared properties of those sounds. We investigate the geometries of sound systems that are defined by the inherent properties of sounds. We document three typological tendencies in sound system geometries: economy, a tendency for the differences between sounds in a system to be definable on a relatively small number of independent dimensions; local symmetry, a tendency for sound systems to have relatively large numbers of pairs of sounds that differ only on one dimension; and global symmetry, a tendency for sound systems to be relatively balanced. The finding of economy corroborates previous results; the two symmetry properties have not been previously documented. We also investigate the relation between the typology of inventory geometries and the typology of individual sounds, showing that the frequency distribution with which individual sounds occur across languages works in favor of both local and global symmetry.

No MeSH data available.


Related in: MedlinePlus