Limits...
Effects of Age and Task Load on Drivers' Response Accuracy and Reaction Time When Responding to Traffic Lights.

Salvia E, Petit C, Champely S, Chomette R, Di Rienzo F, Collet C - Front Aging Neurosci (2016)

Bottom Line: Yet, how aging alters sensorimotor functions and impacts driving safety remains poorly understood.In the third test, the rate of no-response suggested that elderly drivers needed more than 2 s to process complex information and respond accurately.Both prolonged RT and increased no-response rate, especially for difficult tasks, might attest an impairment of cognitive abilities in relation to aging.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique and Aix-Marseille Université Marseille, France.

ABSTRACT
Due to population aging, elderly drivers represent an increasing proportion of car drivers. Yet, how aging alters sensorimotor functions and impacts driving safety remains poorly understood. This paper aimed at assessing to which extent elderly drivers are sensitive to various task loads and how this affects the reaction time (RT) in a driving context. Old and middle-aged people completed RT tasks which reproduced cognitive demands encountered while driving. Participants had to detect and respond to traffic lights or traffic light arrows as quickly as possible, under three experimental conditions of incremental difficulty. In both groups, we hypothesized that decision-making would be impacted by the number of cues to be processed. The first test was a simple measure of RT. The second and third tests were choice RT tasks requiring the processing of 3 and 5 cues, respectively. Responses were collected within a 2 s time-window. Otherwise, the trial was considered a no-response. In both groups, the data revealed that RT, error rate (incorrect answers), and no-response rate increased along with task difficulty. However, the middle-aged group outperformed the elderly group. The RT difference between the two groups increased drastically along with task difficulty. In the third test, the rate of no-response suggested that elderly drivers needed more than 2 s to process complex information and respond accurately. Both prolonged RT and increased no-response rate, especially for difficult tasks, might attest an impairment of cognitive abilities in relation to aging. Accordingly, casual driving conditions for young drivers may be particularly complex and stressful for elderly people who should thus be informed about the effects of normal aging upon driving.

No MeSH data available.


Related in: MedlinePlus

(A) Presentation of the traffic lights displayed on the screen. On the left side, lights displayed on the screen during the first and the second tests. On the right side, lights or directional arrows displayed on the screen during the third test. (B) Description of each experimental condition (Test 1, Test 2, and Test 3) and the response the participants had to give for each stimulus (light or arrow). Keys that should be pressed on the keyboard were covered with a sticker whose color corresponds to that of the stimulus light.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940374&req=5

Figure 1: (A) Presentation of the traffic lights displayed on the screen. On the left side, lights displayed on the screen during the first and the second tests. On the right side, lights or directional arrows displayed on the screen during the third test. (B) Description of each experimental condition (Test 1, Test 2, and Test 3) and the response the participants had to give for each stimulus (light or arrow). Keys that should be pressed on the keyboard were covered with a sticker whose color corresponds to that of the stimulus light.

Mentions: Each participant completed three different tests on a computer screen displaying different stimuli. The participants were instructed to use either a keyboard or a pedal board to respond to each stimulus, as quickly as possible, within a 2 s time window. This delay is representative of driving situations where quick decisions are required, most being taken within 1.5 s (e.g., decision to brake, see Cantin et al., 2009). We gave specific instructions before each test as follows. For the first test: “Press the left pedal (as if you had to brake) as early as you see the red light switching on”. For the second test, the instruction was “Press the left pedal (as if you had to brake) or the right pedal (as if you had to accelerate) as early as you see the red or the green light switching on, respectively and the “up” arrow of the keyboard when the yellow light switches on”. For the third test, the participants first learnt the following stimulus-response associations: red right arrow/right pedal, red left arrow/left pedal, green right arrow/right arrow on the keyboard, green left arrow/left arrow on the keyboard and finally yellow right or left arrow/“up” arrow on the keyboard (Figure 1). Hence, task requirements were of increasing difficulty from the first to the third test. To sum up, the first task (T1) was a simple RT, whereas the second (T2) and the third (T3) tasks respectively consisted in 3-choice and 5-choice RT. Then, after checking that each stimulus-response association was recalled without any error, the instruction was to press the appropriate pedal (or key) as early as the associated stimulus was triggered. The participants were trained before the experiment started, to make sure that they well understood all instructions – specifically the association between each stimulus and its corresponding key. They were allocated as much time as needed to apply these instructions without errors before starting the experiment.


Effects of Age and Task Load on Drivers' Response Accuracy and Reaction Time When Responding to Traffic Lights.

Salvia E, Petit C, Champely S, Chomette R, Di Rienzo F, Collet C - Front Aging Neurosci (2016)

(A) Presentation of the traffic lights displayed on the screen. On the left side, lights displayed on the screen during the first and the second tests. On the right side, lights or directional arrows displayed on the screen during the third test. (B) Description of each experimental condition (Test 1, Test 2, and Test 3) and the response the participants had to give for each stimulus (light or arrow). Keys that should be pressed on the keyboard were covered with a sticker whose color corresponds to that of the stimulus light.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940374&req=5

Figure 1: (A) Presentation of the traffic lights displayed on the screen. On the left side, lights displayed on the screen during the first and the second tests. On the right side, lights or directional arrows displayed on the screen during the third test. (B) Description of each experimental condition (Test 1, Test 2, and Test 3) and the response the participants had to give for each stimulus (light or arrow). Keys that should be pressed on the keyboard were covered with a sticker whose color corresponds to that of the stimulus light.
Mentions: Each participant completed three different tests on a computer screen displaying different stimuli. The participants were instructed to use either a keyboard or a pedal board to respond to each stimulus, as quickly as possible, within a 2 s time window. This delay is representative of driving situations where quick decisions are required, most being taken within 1.5 s (e.g., decision to brake, see Cantin et al., 2009). We gave specific instructions before each test as follows. For the first test: “Press the left pedal (as if you had to brake) as early as you see the red light switching on”. For the second test, the instruction was “Press the left pedal (as if you had to brake) or the right pedal (as if you had to accelerate) as early as you see the red or the green light switching on, respectively and the “up” arrow of the keyboard when the yellow light switches on”. For the third test, the participants first learnt the following stimulus-response associations: red right arrow/right pedal, red left arrow/left pedal, green right arrow/right arrow on the keyboard, green left arrow/left arrow on the keyboard and finally yellow right or left arrow/“up” arrow on the keyboard (Figure 1). Hence, task requirements were of increasing difficulty from the first to the third test. To sum up, the first task (T1) was a simple RT, whereas the second (T2) and the third (T3) tasks respectively consisted in 3-choice and 5-choice RT. Then, after checking that each stimulus-response association was recalled without any error, the instruction was to press the appropriate pedal (or key) as early as the associated stimulus was triggered. The participants were trained before the experiment started, to make sure that they well understood all instructions – specifically the association between each stimulus and its corresponding key. They were allocated as much time as needed to apply these instructions without errors before starting the experiment.

Bottom Line: Yet, how aging alters sensorimotor functions and impacts driving safety remains poorly understood.In the third test, the rate of no-response suggested that elderly drivers needed more than 2 s to process complex information and respond accurately.Both prolonged RT and increased no-response rate, especially for difficult tasks, might attest an impairment of cognitive abilities in relation to aging.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique and Aix-Marseille Université Marseille, France.

ABSTRACT
Due to population aging, elderly drivers represent an increasing proportion of car drivers. Yet, how aging alters sensorimotor functions and impacts driving safety remains poorly understood. This paper aimed at assessing to which extent elderly drivers are sensitive to various task loads and how this affects the reaction time (RT) in a driving context. Old and middle-aged people completed RT tasks which reproduced cognitive demands encountered while driving. Participants had to detect and respond to traffic lights or traffic light arrows as quickly as possible, under three experimental conditions of incremental difficulty. In both groups, we hypothesized that decision-making would be impacted by the number of cues to be processed. The first test was a simple measure of RT. The second and third tests were choice RT tasks requiring the processing of 3 and 5 cues, respectively. Responses were collected within a 2 s time-window. Otherwise, the trial was considered a no-response. In both groups, the data revealed that RT, error rate (incorrect answers), and no-response rate increased along with task difficulty. However, the middle-aged group outperformed the elderly group. The RT difference between the two groups increased drastically along with task difficulty. In the third test, the rate of no-response suggested that elderly drivers needed more than 2 s to process complex information and respond accurately. Both prolonged RT and increased no-response rate, especially for difficult tasks, might attest an impairment of cognitive abilities in relation to aging. Accordingly, casual driving conditions for young drivers may be particularly complex and stressful for elderly people who should thus be informed about the effects of normal aging upon driving.

No MeSH data available.


Related in: MedlinePlus