Limits...
Experimental But Not Sex Differences of a Mental Rotation Training Program on Adolescents.

Rodán A, Contreras MJ, Elosúa MR, Gimeno P - Front Psychol (2016)

Bottom Line: The study, which was performed on students aged 14 and 15 years old, showed a significant improvement in this visuospatial skill for a training group (n = 21) compared to a control group (n = 24).Regarding the relationship between skills, a significant correlation between experience with video games and spatial ability was found, as well as between mathematical reasoning and intelligence and with spatial ability in the initial phase for the total sample.These findings are discussed from a cognitive point of view and within the current sociocultural context, where the equal use of new technologies could help reduce the visuospatial gap between sexes.

View Article: PubMed Central - PubMed

Affiliation: CEU-San Pablo UniversityMadrid, Spain; Universidad Nacional de Educación a DistanciaMadrid, Spain.

ABSTRACT
Given the importance of visuospatial processing in areas related to the STEM (Science, Technology, Engineering, and Mathematics) disciplines, where there is still a considerable gap in the area of sex differences, the interest in the effects of visuospatial skills training continues to grow. Therefore, we have evaluated the visuospatial improvement of adolescents after performing a computerized mental rotation training program, as well as the relationship of this visuospatial ability with other cognitive, emotional factors and those factors based on the experience with videogames. The study, which was performed on students aged 14 and 15 years old, showed a significant improvement in this visuospatial skill for a training group (n = 21) compared to a control group (n = 24). Furthermore, no significant sex differences were obtained for spatial ability or for any of the other tasks evaluated, either before or after training. Regarding the relationship between skills, a significant correlation between experience with video games and spatial ability was found, as well as between mathematical reasoning and intelligence and with spatial ability in the initial phase for the total sample. These findings are discussed from a cognitive point of view and within the current sociocultural context, where the equal use of new technologies could help reduce the visuospatial gap between sexes.

No MeSH data available.


Example of the temporal sequence of a MRTP trial.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940366&req=5

Figure 2: Example of the temporal sequence of a MRTP trial.

Mentions: The E-Prime computer software version 1.0 (Psychology Software Tools, 2002) was used for the programming, presentation of stimuli and data collection of the MRTP. Only the EG participants carried out the MRTP in three different sessions spread over three consecutive days – 1 session per day –. During the task, the participants had to decide whether stimulus 1 fits into the standard target, answering “1 YES” or “1 NO”. Afterwards, participants had to do the same with stimulus 2, answering “2 YES” or “2 NO”. Participants recorded their responses through the computer keyboard. Each session consisted of two phases: (i) a practice round with 10 slides, in which each response was followed by feedback on whether it was correct (happy face and “well done”) or incorrect (sad face and “you can do better”), and an additional animation with the progressive rotation of each figure, confirming whether or not they fitted into the target, to strengthen the understanding of the task; and (ii) a specific training round of 100 slides per session in which participants did not visualize the animated verification sequence, but still received feedback on whether their answer was right or wrong (Figure 2). The approximate length of each session was around 40 min so that at the end of the third session, participants had completed a total of 330 slides in approximately 120 min of training, varying according to each participant, as there was no limit in the response time. The MRTP was carried out collectively in the school’s computer room, and each student performed the task individually. The monitor model was the same for all participants and the screen resolution was set to 1280 × 1024 so as to maintain a regular format (unstrained) and to comply with the resolution required by the E-Prime program. The approximate working distance was about 50 cm. and the environment in the computer room remained quiet and free from noise and distractions.


Experimental But Not Sex Differences of a Mental Rotation Training Program on Adolescents.

Rodán A, Contreras MJ, Elosúa MR, Gimeno P - Front Psychol (2016)

Example of the temporal sequence of a MRTP trial.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940366&req=5

Figure 2: Example of the temporal sequence of a MRTP trial.
Mentions: The E-Prime computer software version 1.0 (Psychology Software Tools, 2002) was used for the programming, presentation of stimuli and data collection of the MRTP. Only the EG participants carried out the MRTP in three different sessions spread over three consecutive days – 1 session per day –. During the task, the participants had to decide whether stimulus 1 fits into the standard target, answering “1 YES” or “1 NO”. Afterwards, participants had to do the same with stimulus 2, answering “2 YES” or “2 NO”. Participants recorded their responses through the computer keyboard. Each session consisted of two phases: (i) a practice round with 10 slides, in which each response was followed by feedback on whether it was correct (happy face and “well done”) or incorrect (sad face and “you can do better”), and an additional animation with the progressive rotation of each figure, confirming whether or not they fitted into the target, to strengthen the understanding of the task; and (ii) a specific training round of 100 slides per session in which participants did not visualize the animated verification sequence, but still received feedback on whether their answer was right or wrong (Figure 2). The approximate length of each session was around 40 min so that at the end of the third session, participants had completed a total of 330 slides in approximately 120 min of training, varying according to each participant, as there was no limit in the response time. The MRTP was carried out collectively in the school’s computer room, and each student performed the task individually. The monitor model was the same for all participants and the screen resolution was set to 1280 × 1024 so as to maintain a regular format (unstrained) and to comply with the resolution required by the E-Prime program. The approximate working distance was about 50 cm. and the environment in the computer room remained quiet and free from noise and distractions.

Bottom Line: The study, which was performed on students aged 14 and 15 years old, showed a significant improvement in this visuospatial skill for a training group (n = 21) compared to a control group (n = 24).Regarding the relationship between skills, a significant correlation between experience with video games and spatial ability was found, as well as between mathematical reasoning and intelligence and with spatial ability in the initial phase for the total sample.These findings are discussed from a cognitive point of view and within the current sociocultural context, where the equal use of new technologies could help reduce the visuospatial gap between sexes.

View Article: PubMed Central - PubMed

Affiliation: CEU-San Pablo UniversityMadrid, Spain; Universidad Nacional de Educación a DistanciaMadrid, Spain.

ABSTRACT
Given the importance of visuospatial processing in areas related to the STEM (Science, Technology, Engineering, and Mathematics) disciplines, where there is still a considerable gap in the area of sex differences, the interest in the effects of visuospatial skills training continues to grow. Therefore, we have evaluated the visuospatial improvement of adolescents after performing a computerized mental rotation training program, as well as the relationship of this visuospatial ability with other cognitive, emotional factors and those factors based on the experience with videogames. The study, which was performed on students aged 14 and 15 years old, showed a significant improvement in this visuospatial skill for a training group (n = 21) compared to a control group (n = 24). Furthermore, no significant sex differences were obtained for spatial ability or for any of the other tasks evaluated, either before or after training. Regarding the relationship between skills, a significant correlation between experience with video games and spatial ability was found, as well as between mathematical reasoning and intelligence and with spatial ability in the initial phase for the total sample. These findings are discussed from a cognitive point of view and within the current sociocultural context, where the equal use of new technologies could help reduce the visuospatial gap between sexes.

No MeSH data available.