Limits...
Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

Sun B, Wang Y, Ding G - Nanoscale Res Lett (2016)

Bottom Line: By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved.As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability.The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory of Micro/Nano Fabrication Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

ABSTRACT
This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

No MeSH data available.


Emission current vs. applied voltage characteristics. The inset represents the F-N plots derived from the curves of current vs. electric fields and a schematic diagram of the flexible field emission setup
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940312&req=5

Fig9: Emission current vs. applied voltage characteristics. The inset represents the F-N plots derived from the curves of current vs. electric fields and a schematic diagram of the flexible field emission setup

Mentions: The flexible field emission properties of the Ni foil emitter were measured using a sandwich structure, two pieces of ITO-PET (indium tin oxide-coated polyethylene terephthalate plastic) films acting as the cathode and the anode, and a piece of PI film with a thickness of 150 μm as a spacer, as described in the inset of Fig. 9. The ITO-PET film was used for the cathode substrate, and the emitter was adhered onto the ITO-PET film by using conductive adhesive tape.Fig. 9


Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

Sun B, Wang Y, Ding G - Nanoscale Res Lett (2016)

Emission current vs. applied voltage characteristics. The inset represents the F-N plots derived from the curves of current vs. electric fields and a schematic diagram of the flexible field emission setup
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940312&req=5

Fig9: Emission current vs. applied voltage characteristics. The inset represents the F-N plots derived from the curves of current vs. electric fields and a schematic diagram of the flexible field emission setup
Mentions: The flexible field emission properties of the Ni foil emitter were measured using a sandwich structure, two pieces of ITO-PET (indium tin oxide-coated polyethylene terephthalate plastic) films acting as the cathode and the anode, and a piece of PI film with a thickness of 150 μm as a spacer, as described in the inset of Fig. 9. The ITO-PET film was used for the cathode substrate, and the emitter was adhered onto the ITO-PET film by using conductive adhesive tape.Fig. 9

Bottom Line: By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved.As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability.The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory of Micro/Nano Fabrication Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

ABSTRACT
This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

No MeSH data available.