Limits...
Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

Sun B, Wang Y, Ding G - Nanoscale Res Lett (2016)

Bottom Line: By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved.As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability.The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory of Micro/Nano Fabrication Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

ABSTRACT
This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

No MeSH data available.


Related in: MedlinePlus

a Optical image of the glass wafer after processing. b Optical image of the Ni foil, twisted and rolled up. SEM images of the foil surface (c, e) from the top and (d, f) from oblique directions
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940312&req=5

Fig6: a Optical image of the glass wafer after processing. b Optical image of the Ni foil, twisted and rolled up. SEM images of the foil surface (c, e) from the top and (d, f) from oblique directions

Mentions: Figure 6a shows the optical image of the glass wafer after processing with Ni foil emitters on it. By using this method, we can get 19 pieces of emitters on each 3-in. wafer. It takes only six procedures to fabricate each wafer, as all the procedures were carried out at room temperature, and the novel fabrication process could be more compatible with other IC procedures. By choosing Ni as the substrate, the emitter showed good mechanical properties for planar supporting and large amplitude bending, and it could even be twisted and rolled up (Fig. 6b). As the CNT roots were firmly embedded in the substrate, strong adhesion could be achieved, avoiding the CNT detachment during the fierce field emission process. The foil surface morphology was inspected by SEM. From the images (Fig. 6c–f), we can see that the Ni substrate is totally covered by the dense CNTs. The CNT roots are firmly embedded in the substrate, and no contamination is induced. In addition, the distribution and height of CNTs were well controlled by the micromachining process. The vertical alignment and uniform distribution of the CNTs in the Ni substrate were actively contributed to stable electron emission when an electric field was applied.Fig. 6


Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

Sun B, Wang Y, Ding G - Nanoscale Res Lett (2016)

a Optical image of the glass wafer after processing. b Optical image of the Ni foil, twisted and rolled up. SEM images of the foil surface (c, e) from the top and (d, f) from oblique directions
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940312&req=5

Fig6: a Optical image of the glass wafer after processing. b Optical image of the Ni foil, twisted and rolled up. SEM images of the foil surface (c, e) from the top and (d, f) from oblique directions
Mentions: Figure 6a shows the optical image of the glass wafer after processing with Ni foil emitters on it. By using this method, we can get 19 pieces of emitters on each 3-in. wafer. It takes only six procedures to fabricate each wafer, as all the procedures were carried out at room temperature, and the novel fabrication process could be more compatible with other IC procedures. By choosing Ni as the substrate, the emitter showed good mechanical properties for planar supporting and large amplitude bending, and it could even be twisted and rolled up (Fig. 6b). As the CNT roots were firmly embedded in the substrate, strong adhesion could be achieved, avoiding the CNT detachment during the fierce field emission process. The foil surface morphology was inspected by SEM. From the images (Fig. 6c–f), we can see that the Ni substrate is totally covered by the dense CNTs. The CNT roots are firmly embedded in the substrate, and no contamination is induced. In addition, the distribution and height of CNTs were well controlled by the micromachining process. The vertical alignment and uniform distribution of the CNTs in the Ni substrate were actively contributed to stable electron emission when an electric field was applied.Fig. 6

Bottom Line: By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved.As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability.The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory of Micro/Nano Fabrication Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

ABSTRACT
This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

No MeSH data available.


Related in: MedlinePlus