Limits...
Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

Sun B, Wang Y, Ding G - Nanoscale Res Lett (2016)

Bottom Line: By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved.As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability.The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory of Micro/Nano Fabrication Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

ABSTRACT
This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

No MeSH data available.


Related in: MedlinePlus

CNTs homogeneously dispersed in PI: a optical photo of the smooth CNT-PI film; b SEM image of the film from the cross section; and c SEM image of the film from the top
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940312&req=5

Fig3: CNTs homogeneously dispersed in PI: a optical photo of the smooth CNT-PI film; b SEM image of the film from the cross section; and c SEM image of the film from the top

Mentions: To study their structure changes in detail, relative value (R-value, ID/IG) is shown in Fig. 3b. It is generally agreed that the R-value provides a useful index for comparing the crystallite sizes (more specifically, peak area of the Lorentzian functions) of various carbon materials. The R-value of the samples treated for 0, 1, 4, 8, and 16 h is 0.721, 0.735, 0.752, 0.802, and 0.849, respectively. It reveals that the R-value of the D bond increases against the milling time, which indicates a small increase in defect density. From the results above, we can see that the CNT dispersion was significantly improved by the ball-milling process; however, shortened CNTs with more structural defects were obtained.Fig. 3


Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

Sun B, Wang Y, Ding G - Nanoscale Res Lett (2016)

CNTs homogeneously dispersed in PI: a optical photo of the smooth CNT-PI film; b SEM image of the film from the cross section; and c SEM image of the film from the top
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940312&req=5

Fig3: CNTs homogeneously dispersed in PI: a optical photo of the smooth CNT-PI film; b SEM image of the film from the cross section; and c SEM image of the film from the top
Mentions: To study their structure changes in detail, relative value (R-value, ID/IG) is shown in Fig. 3b. It is generally agreed that the R-value provides a useful index for comparing the crystallite sizes (more specifically, peak area of the Lorentzian functions) of various carbon materials. The R-value of the samples treated for 0, 1, 4, 8, and 16 h is 0.721, 0.735, 0.752, 0.802, and 0.849, respectively. It reveals that the R-value of the D bond increases against the milling time, which indicates a small increase in defect density. From the results above, we can see that the CNT dispersion was significantly improved by the ball-milling process; however, shortened CNTs with more structural defects were obtained.Fig. 3

Bottom Line: By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved.As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability.The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory of Micro/Nano Fabrication Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

ABSTRACT
This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

No MeSH data available.


Related in: MedlinePlus