Limits...
Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

Sun B, Wang Y, Ding G - Nanoscale Res Lett (2016)

Bottom Line: By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved.As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability.The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory of Micro/Nano Fabrication Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

ABSTRACT
This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

No MeSH data available.


a Variation of the CNT distribution as a function of milling time. b Raman spectra of the milled CNTs
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940312&req=5

Fig2: a Variation of the CNT distribution as a function of milling time. b Raman spectra of the milled CNTs

Mentions: Due to their small tip radius and high aspect ratio, CNTs have a highly entangled structure, which needs to be dispersed, preferably up to a single nanotube level, for practical applications. Ball-milling process was employed to improve the CNT dispersion, and the CNT aggregate (composed of many CNTs) size distribution was investigated by a laser particle size analyzer. According to the particle size evolution in Fig. 2a, the particle size decreased and the length distribution narrowed down with increasing milling time. The aggregate particle size decreased from over 1200 nm to approx 804 nm in the first 1-h milling, and then, the rate of aggregate size reduction slowed down. Average sizes of about 699, 616, and 533 nm could be achieved after milling for 4, 8, and 16 h, respectively.Fig. 2


Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

Sun B, Wang Y, Ding G - Nanoscale Res Lett (2016)

a Variation of the CNT distribution as a function of milling time. b Raman spectra of the milled CNTs
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940312&req=5

Fig2: a Variation of the CNT distribution as a function of milling time. b Raman spectra of the milled CNTs
Mentions: Due to their small tip radius and high aspect ratio, CNTs have a highly entangled structure, which needs to be dispersed, preferably up to a single nanotube level, for practical applications. Ball-milling process was employed to improve the CNT dispersion, and the CNT aggregate (composed of many CNTs) size distribution was investigated by a laser particle size analyzer. According to the particle size evolution in Fig. 2a, the particle size decreased and the length distribution narrowed down with increasing milling time. The aggregate particle size decreased from over 1200 nm to approx 804 nm in the first 1-h milling, and then, the rate of aggregate size reduction slowed down. Average sizes of about 699, 616, and 533 nm could be achieved after milling for 4, 8, and 16 h, respectively.Fig. 2

Bottom Line: By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved.As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability.The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory of Micro/Nano Fabrication Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

ABSTRACT
This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

No MeSH data available.