Limits...
Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

Sun B, Wang Y, Ding G - Nanoscale Res Lett (2016)

Bottom Line: By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved.As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability.The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory of Micro/Nano Fabrication Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

ABSTRACT
This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

No MeSH data available.


a Photograph of the X-ray source assembly. Photographs of developed film plates exposed at different emission currents: b 0, c 47, d 102, e 213, f 307, and g 423 μA
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940312&req=5

Fig10: a Photograph of the X-ray source assembly. Photographs of developed film plates exposed at different emission currents: b 0, c 47, d 102, e 213, f 307, and g 423 μA

Mentions: To check the practical application of the novel emitter, a simple X-ray imaging system was set up. The electrode structure for X-ray generation was modified based on a traditional hot X-ray tube. The Ni foil emitter was used as the cathode with bending form as shown in Fig. 10a. The compact X-ray measurement system was set up, with a simple diode-type (i.e., consisting of a cathode and an anode) configuration of an electron source and a tungsten-embedded copper anode. The distance between cathode and the copper anode was maintained at 1.5 mm. The proof of X-ray creation was done by using an X-ray-sensitive film. This film was commercially available (Kodak Insight, 31 × 41 mm2) and widely used in dental diagnostics as standard X-ray analog film plates. The detection was done by placing the film in front of the anode inside the vacuum chamber.Fig. 10


Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

Sun B, Wang Y, Ding G - Nanoscale Res Lett (2016)

a Photograph of the X-ray source assembly. Photographs of developed film plates exposed at different emission currents: b 0, c 47, d 102, e 213, f 307, and g 423 μA
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940312&req=5

Fig10: a Photograph of the X-ray source assembly. Photographs of developed film plates exposed at different emission currents: b 0, c 47, d 102, e 213, f 307, and g 423 μA
Mentions: To check the practical application of the novel emitter, a simple X-ray imaging system was set up. The electrode structure for X-ray generation was modified based on a traditional hot X-ray tube. The Ni foil emitter was used as the cathode with bending form as shown in Fig. 10a. The compact X-ray measurement system was set up, with a simple diode-type (i.e., consisting of a cathode and an anode) configuration of an electron source and a tungsten-embedded copper anode. The distance between cathode and the copper anode was maintained at 1.5 mm. The proof of X-ray creation was done by using an X-ray-sensitive film. This film was commercially available (Kodak Insight, 31 × 41 mm2) and widely used in dental diagnostics as standard X-ray analog film plates. The detection was done by placing the film in front of the anode inside the vacuum chamber.Fig. 10

Bottom Line: By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved.As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability.The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory of Micro/Nano Fabrication Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

ABSTRACT
This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

No MeSH data available.