Limits...
Effects of compression clothing on speed-power performance of elite Paralympic sprinters: a pilot study.

Loturco I, Winckler C, Lourenço TF, Veríssimo A, Kobal R, Kitamura K, Pereira LA, Nakamura FY - Springerplus (2016)

Bottom Line: Compression garments are thought to aid performance in some selected speed-power activities owing to improved sensory feedback and proprioception.Magnitude-based inference was used to analyze the results.However, chronic effects in Paralympic athletes wearing compression garments need to be further tested, in order to support its use as a specific training aid.

View Article: PubMed Central - PubMed

Affiliation: NAR - Nucleus of High Performance in Sport, Av. Padre José Maria, 555 - Santo Amaro, São Paulo, SP 04753-060 Brazil.

ABSTRACT

Background: Compression garments are thought to aid performance in some selected speed-power activities owing to improved sensory feedback and proprioception. The aim of this study was to test the effects of using compression garments on speed and power-related performances in elite sprinters with visual impairment, who rely more on proprioception to perform than their Olympic peers. Eight top-level Paralympic sprinters competing in 100- and 200-m races performed, in the following order: unloaded squat jump (SJ), loaded jump squat (JS) and sprint tests over 20- and 70-m distances; using or not the compression garment. The maximum mean propulsive power value obtained during the JS attempts (starting at 40 % of their body mass, after which a load of 10 % of body mass was progressively added) was considered for data analysis purposes. The athletes executed the SJ and JS attempts without any help from their guides. Magnitude-based inference was used to analyze the results.

Findings: The unloaded SJ was possibly higher in the compression than the placebo condition (41.19 ± 5.09 vs. 39.49 ± 5.75 cm). Performance differences in the loaded JS and sprint tests were all rated as unclear.

Conclusions: It was concluded that the acute enhancement in vertical jump ability should be explored in the preparation of Paralympic sprinters during power-related training sessions. However, chronic effects in Paralympic athletes wearing compression garments need to be further tested, in order to support its use as a specific training aid.

No MeSH data available.


Related in: MedlinePlus

Compression garment worn by the Paralympic athletes
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940310&req=5

Fig1: Compression garment worn by the Paralympic athletes

Mentions: This is a pilot study using a within-subject randomized cross-over experimental design to test the effectiveness of compression garments on speed–power tests performance in eight top-level Paralympic sprinters. Four of them wore the compression garments on the first testing day, while the other four athletes wore the non-compressive clothes (“control condition”). The “control condition” consisted of wearing a non-compressive Lycra® clothing, whereas the “compression condition” consisted of using garments with a functional compressive-body composed of 84 % nylon and 16 % elastane (Under Armour, Baltimore, MD, USA). The athletes performed, in the following order, unloaded squat jump (SJ), loaded jump squat (JS) and a sprint test over 20- and 70-m distances; using or not the lower body and upper body compression garment (Fig. 1). The tests were performed on the same day, with 5–10 min separating each test. Prior to the two testing sessions, the participants dressed the assigned clothes and executed a standardized warm-up protocol, including general (i.e., running at a moderate pace for 10-min followed by 5-min of active lower limb stretching) and specific exercises (i.e., sprint drills and low-intensity plyometrics). The warm-up was followed by a 3-min rest interval, after which the athletes were required to perform the actual tests. The test days were interspersed with 48-h, a period during which the athletes were oriented not to heavily train and to maintain their habitual dietary habits. In the 24-h prior to testing, the athletes were also requested not to consume alcohol or caffeine-based beverages. The study was conducted during the last semester of the final preparation phase of the cycle leading up to the 2016 Paralympic Games.Fig. 1


Effects of compression clothing on speed-power performance of elite Paralympic sprinters: a pilot study.

Loturco I, Winckler C, Lourenço TF, Veríssimo A, Kobal R, Kitamura K, Pereira LA, Nakamura FY - Springerplus (2016)

Compression garment worn by the Paralympic athletes
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940310&req=5

Fig1: Compression garment worn by the Paralympic athletes
Mentions: This is a pilot study using a within-subject randomized cross-over experimental design to test the effectiveness of compression garments on speed–power tests performance in eight top-level Paralympic sprinters. Four of them wore the compression garments on the first testing day, while the other four athletes wore the non-compressive clothes (“control condition”). The “control condition” consisted of wearing a non-compressive Lycra® clothing, whereas the “compression condition” consisted of using garments with a functional compressive-body composed of 84 % nylon and 16 % elastane (Under Armour, Baltimore, MD, USA). The athletes performed, in the following order, unloaded squat jump (SJ), loaded jump squat (JS) and a sprint test over 20- and 70-m distances; using or not the lower body and upper body compression garment (Fig. 1). The tests were performed on the same day, with 5–10 min separating each test. Prior to the two testing sessions, the participants dressed the assigned clothes and executed a standardized warm-up protocol, including general (i.e., running at a moderate pace for 10-min followed by 5-min of active lower limb stretching) and specific exercises (i.e., sprint drills and low-intensity plyometrics). The warm-up was followed by a 3-min rest interval, after which the athletes were required to perform the actual tests. The test days were interspersed with 48-h, a period during which the athletes were oriented not to heavily train and to maintain their habitual dietary habits. In the 24-h prior to testing, the athletes were also requested not to consume alcohol or caffeine-based beverages. The study was conducted during the last semester of the final preparation phase of the cycle leading up to the 2016 Paralympic Games.Fig. 1

Bottom Line: Compression garments are thought to aid performance in some selected speed-power activities owing to improved sensory feedback and proprioception.Magnitude-based inference was used to analyze the results.However, chronic effects in Paralympic athletes wearing compression garments need to be further tested, in order to support its use as a specific training aid.

View Article: PubMed Central - PubMed

Affiliation: NAR - Nucleus of High Performance in Sport, Av. Padre José Maria, 555 - Santo Amaro, São Paulo, SP 04753-060 Brazil.

ABSTRACT

Background: Compression garments are thought to aid performance in some selected speed-power activities owing to improved sensory feedback and proprioception. The aim of this study was to test the effects of using compression garments on speed and power-related performances in elite sprinters with visual impairment, who rely more on proprioception to perform than their Olympic peers. Eight top-level Paralympic sprinters competing in 100- and 200-m races performed, in the following order: unloaded squat jump (SJ), loaded jump squat (JS) and sprint tests over 20- and 70-m distances; using or not the compression garment. The maximum mean propulsive power value obtained during the JS attempts (starting at 40 % of their body mass, after which a load of 10 % of body mass was progressively added) was considered for data analysis purposes. The athletes executed the SJ and JS attempts without any help from their guides. Magnitude-based inference was used to analyze the results.

Findings: The unloaded SJ was possibly higher in the compression than the placebo condition (41.19 ± 5.09 vs. 39.49 ± 5.75 cm). Performance differences in the loaded JS and sprint tests were all rated as unclear.

Conclusions: It was concluded that the acute enhancement in vertical jump ability should be explored in the preparation of Paralympic sprinters during power-related training sessions. However, chronic effects in Paralympic athletes wearing compression garments need to be further tested, in order to support its use as a specific training aid.

No MeSH data available.


Related in: MedlinePlus