Limits...
Synthesis and Characteristics of FePt Nanoparticle Films Under In Situ-Applied Magnetic Field.

Qian X, Gao MY, Li AD, Zhou XY, Liu XJ, Cao YQ, Li C, Wu D - Nanoscale Res Lett (2016)

Bottom Line: The effect of in situ-applied magnetic field on the structure, morphology, and magnetic properties of FePt nanoparticle films was characterized.It is found that the applied magnetic field during the chemical synthesis of FePt nanoparticles plays a key role in the crystallinity and magnetic property of FePt nanoparticle films.The applied magnetic field during the synthesis of FePt nanoparticles not only significantly improves the nanoparticles' c-axis preferred orientation but also benefits the phase transition of FePt nanoparticles from face-centered cubic to face-centered tetragonal structure during the annealing process.

View Article: PubMed Central - PubMed

Affiliation: National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.

ABSTRACT
In situ external magnetic field was applied during the synthesis of FePt nanoparticles via a chemical solution method. FePt nanoparticle films were prepared on Si by a drop-coating method with and without a magnetic field. Annealing at 700 °C in reductive atmosphere was explored to obtain ferromagnetic FePt L10 phase. The effect of in situ-applied magnetic field on the structure, morphology, and magnetic properties of FePt nanoparticle films was characterized. It is found that the applied magnetic field during the chemical synthesis of FePt nanoparticles plays a key role in the crystallinity and magnetic property of FePt nanoparticle films. As-synthesized FePt nanoparticles under the magnetic field are monodispersed and can be self-assembled over a larger area by a dropping method. The applied magnetic field during the synthesis of FePt nanoparticles not only significantly improves the nanoparticles' c-axis preferred orientation but also benefits the phase transition of FePt nanoparticles from face-centered cubic to face-centered tetragonal structure during the annealing process. The FePt nanoparticle films derived under magnetic field also show some magnetic anisotropy.

No MeSH data available.


Related in: MedlinePlus

The XRD patterns of a unannealed and b 700 °C annealed FePt nanoparticle films with different magnetic field conditions
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4940308&req=5

Fig2: The XRD patterns of a unannealed and b 700 °C annealed FePt nanoparticle films with different magnetic field conditions

Mentions: The effect of applied external magnetic field on the crystalline phase and orientation of FePt nanoparticle films on Si have been examined by XRD. Figure 2a, b shows the XRD patterns of unannealed and annealed FePt nanoparticle films on Si under different magnetic conditions corresponding to 1#, 2#, and 3# samples. In Fig. 2a, all unannealed samples have two broad peaks at 40.3° and 46.9°, assigned to the (111) and (200) lattice planes, respectively, from superparamagnetic fcc-FePt nanoparticles. All the samples exhibit similar average grain size of ~4.1 ± 0.3 nm calculated by the Scherrer equation, indicating that the in situ-applied magnetic field has no effect on the grain size of the FePt nanoparticles from chemical synthesis and drop-coating process. Another noticeable feature is that the relative intensity ratio of I(200)/I(111) peaks of 0.89 and 0.76 in the 2# and 3# samples, respectively, with an applied magnetic field is stronger than that of 0.46 in the 1# sample without an applied magnetic field, as seen in Table 2. This indicates that FePt nanoparticles derived from chemical synthesis under in situ-applied magnetic field tend to align perpendicular to the (100) crystal plane. Whereas the applied magnetic field during drop-coating process for the FePt nanoparticle films has no obvious influence on the orientation of the 2# and 3# samples.Fig. 2


Synthesis and Characteristics of FePt Nanoparticle Films Under In Situ-Applied Magnetic Field.

Qian X, Gao MY, Li AD, Zhou XY, Liu XJ, Cao YQ, Li C, Wu D - Nanoscale Res Lett (2016)

The XRD patterns of a unannealed and b 700 °C annealed FePt nanoparticle films with different magnetic field conditions
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4940308&req=5

Fig2: The XRD patterns of a unannealed and b 700 °C annealed FePt nanoparticle films with different magnetic field conditions
Mentions: The effect of applied external magnetic field on the crystalline phase and orientation of FePt nanoparticle films on Si have been examined by XRD. Figure 2a, b shows the XRD patterns of unannealed and annealed FePt nanoparticle films on Si under different magnetic conditions corresponding to 1#, 2#, and 3# samples. In Fig. 2a, all unannealed samples have two broad peaks at 40.3° and 46.9°, assigned to the (111) and (200) lattice planes, respectively, from superparamagnetic fcc-FePt nanoparticles. All the samples exhibit similar average grain size of ~4.1 ± 0.3 nm calculated by the Scherrer equation, indicating that the in situ-applied magnetic field has no effect on the grain size of the FePt nanoparticles from chemical synthesis and drop-coating process. Another noticeable feature is that the relative intensity ratio of I(200)/I(111) peaks of 0.89 and 0.76 in the 2# and 3# samples, respectively, with an applied magnetic field is stronger than that of 0.46 in the 1# sample without an applied magnetic field, as seen in Table 2. This indicates that FePt nanoparticles derived from chemical synthesis under in situ-applied magnetic field tend to align perpendicular to the (100) crystal plane. Whereas the applied magnetic field during drop-coating process for the FePt nanoparticle films has no obvious influence on the orientation of the 2# and 3# samples.Fig. 2

Bottom Line: The effect of in situ-applied magnetic field on the structure, morphology, and magnetic properties of FePt nanoparticle films was characterized.It is found that the applied magnetic field during the chemical synthesis of FePt nanoparticles plays a key role in the crystallinity and magnetic property of FePt nanoparticle films.The applied magnetic field during the synthesis of FePt nanoparticles not only significantly improves the nanoparticles' c-axis preferred orientation but also benefits the phase transition of FePt nanoparticles from face-centered cubic to face-centered tetragonal structure during the annealing process.

View Article: PubMed Central - PubMed

Affiliation: National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.

ABSTRACT
In situ external magnetic field was applied during the synthesis of FePt nanoparticles via a chemical solution method. FePt nanoparticle films were prepared on Si by a drop-coating method with and without a magnetic field. Annealing at 700 °C in reductive atmosphere was explored to obtain ferromagnetic FePt L10 phase. The effect of in situ-applied magnetic field on the structure, morphology, and magnetic properties of FePt nanoparticle films was characterized. It is found that the applied magnetic field during the chemical synthesis of FePt nanoparticles plays a key role in the crystallinity and magnetic property of FePt nanoparticle films. As-synthesized FePt nanoparticles under the magnetic field are monodispersed and can be self-assembled over a larger area by a dropping method. The applied magnetic field during the synthesis of FePt nanoparticles not only significantly improves the nanoparticles' c-axis preferred orientation but also benefits the phase transition of FePt nanoparticles from face-centered cubic to face-centered tetragonal structure during the annealing process. The FePt nanoparticle films derived under magnetic field also show some magnetic anisotropy.

No MeSH data available.


Related in: MedlinePlus