Limits...
NOVA2-mediated RNA regulation is required for axonal pathfinding during development.

Saito Y, Miranda-Rottmann S, Ruggiu M, Park CY, Fak JJ, Zhong R, Duncan JS, Fabella BA, Junge HJ, Chen Z, Araya R, Fritzsch B, Hudspeth AJ, Darnell RB - Elife (2016)

Bottom Line: The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators.NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2.Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States.

ABSTRACT
The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development. Corresponding axonal pathfinding defects were specific to NOVA2 deficiency: Nova2-/- but not Nova1-/- mice had agenesis of the corpus callosum, and axonal outgrowth defects specific to ventral motoneuron axons and efferent innervation of the cochlea. Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo.

No MeSH data available.


Related in: MedlinePlus

NOVA1 and NOVA2 expression in the mouse embryonic brain.(A) Immunohistochemistry of NOVA1 (b, f, j, n: green) and NOVA2 (c, g, k, o: red) in E18.5 coronal sections (a–d), sagittal sections (e–h), neocortex (i–p). Scale bars; 500 μm (a–h), 50 μm (i–l).DOI:http://dx.doi.org/10.7554/eLife.14371.009
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4930328&req=5

fig2s3: NOVA1 and NOVA2 expression in the mouse embryonic brain.(A) Immunohistochemistry of NOVA1 (b, f, j, n: green) and NOVA2 (c, g, k, o: red) in E18.5 coronal sections (a–d), sagittal sections (e–h), neocortex (i–p). Scale bars; 500 μm (a–h), 50 μm (i–l).DOI:http://dx.doi.org/10.7554/eLife.14371.009

Mentions: The distribution of NOVA2 throughout the brain mirrored previous immunohistochemical and in situ hybridization data (Yang et al., 1998) showed that NOVA2 was expressed at high levels in cortex and hippocampus, and at lower levels in midbrain and spinal cord, where NOVA1 was expressed at high levels in a generally reciprocal fashion, with low levels in the cortex and relatively high levels in the midbrain and spinal cord (Figure 2—figure supplement 3). The NOVA2 expressed cell in the cortical plate of neocortex was ubiquitously distributed at comparable expression level, yet NOVA1 was expressed in the specified cell types. Taken together, the HITS-CLIP and immunohistochemical data suggest that NOVA1 and NOVA2 perform unique biological functions in different brain areas and cell types, and that in those few cortical neurons expressing NOVA1, NOVA2 might be expected to have some redundant activity, while the reciprocal may not so often be the case.


NOVA2-mediated RNA regulation is required for axonal pathfinding during development.

Saito Y, Miranda-Rottmann S, Ruggiu M, Park CY, Fak JJ, Zhong R, Duncan JS, Fabella BA, Junge HJ, Chen Z, Araya R, Fritzsch B, Hudspeth AJ, Darnell RB - Elife (2016)

NOVA1 and NOVA2 expression in the mouse embryonic brain.(A) Immunohistochemistry of NOVA1 (b, f, j, n: green) and NOVA2 (c, g, k, o: red) in E18.5 coronal sections (a–d), sagittal sections (e–h), neocortex (i–p). Scale bars; 500 μm (a–h), 50 μm (i–l).DOI:http://dx.doi.org/10.7554/eLife.14371.009
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4930328&req=5

fig2s3: NOVA1 and NOVA2 expression in the mouse embryonic brain.(A) Immunohistochemistry of NOVA1 (b, f, j, n: green) and NOVA2 (c, g, k, o: red) in E18.5 coronal sections (a–d), sagittal sections (e–h), neocortex (i–p). Scale bars; 500 μm (a–h), 50 μm (i–l).DOI:http://dx.doi.org/10.7554/eLife.14371.009
Mentions: The distribution of NOVA2 throughout the brain mirrored previous immunohistochemical and in situ hybridization data (Yang et al., 1998) showed that NOVA2 was expressed at high levels in cortex and hippocampus, and at lower levels in midbrain and spinal cord, where NOVA1 was expressed at high levels in a generally reciprocal fashion, with low levels in the cortex and relatively high levels in the midbrain and spinal cord (Figure 2—figure supplement 3). The NOVA2 expressed cell in the cortical plate of neocortex was ubiquitously distributed at comparable expression level, yet NOVA1 was expressed in the specified cell types. Taken together, the HITS-CLIP and immunohistochemical data suggest that NOVA1 and NOVA2 perform unique biological functions in different brain areas and cell types, and that in those few cortical neurons expressing NOVA1, NOVA2 might be expected to have some redundant activity, while the reciprocal may not so often be the case.

Bottom Line: The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators.NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2.Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States.

ABSTRACT
The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development. Corresponding axonal pathfinding defects were specific to NOVA2 deficiency: Nova2-/- but not Nova1-/- mice had agenesis of the corpus callosum, and axonal outgrowth defects specific to ventral motoneuron axons and efferent innervation of the cochlea. Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo.

No MeSH data available.


Related in: MedlinePlus