Limits...
C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease.

Kleinknecht A, Popova B, Lázaro DF, Pinho R, Valerius O, Outeiro TF, Braus GH - PLoS Genet. (2016)

Bottom Line: Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies.Using a yeast model of PD, we found that Y133 is required for protective S129 phosphorylation and for S129-independent proteasome clearance. αSyn can be nitrated and form stable covalent dimers originating from covalent crosslinking of two tyrosine residues.The nitration level of wild-type αSyn was higher compared to that of A30P mutant that is non-toxic in yeast.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany.

ABSTRACT
Parkinson´s disease (PD) is characterized by the presence of proteinaceous inclusions called Lewy bodies that are mainly composed of α-synuclein (αSyn). Elevated levels of oxidative or nitrative stresses have been implicated in αSyn related toxicity. Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies. The neighboring tyrosine residues Y125, Y133 and Y136 are phosphorylation and nitration sites. Using a yeast model of PD, we found that Y133 is required for protective S129 phosphorylation and for S129-independent proteasome clearance. αSyn can be nitrated and form stable covalent dimers originating from covalent crosslinking of two tyrosine residues. Nitrated tyrosine residues, but not di-tyrosine-crosslinked dimers, contributed to αSyn cytotoxicity and aggregation. Analysis of tyrosine residues involved in nitration and crosslinking revealed that the C-terminus, rather than the N-terminus of αSyn, is modified by nitration and di-tyrosine formation. The nitration level of wild-type αSyn was higher compared to that of A30P mutant that is non-toxic in yeast. A30P formed more dimers than wild-type αSyn, suggesting that dimer formation represents a cellular detoxification pathway in yeast. Deletion of the yeast flavohemoglobin gene YHB1 resulted in an increase of cellular nitrative stress and cytotoxicity leading to enhanced aggregation of A30P αSyn. Yhb1 protected yeast from A30P-induced mitochondrial fragmentation and peroxynitrite-induced nitrative stress. Strikingly, overexpression of neuroglobin, the human homolog of YHB1, protected against αSyn inclusion formation in mammalian cells. In total, our data suggest that C-terminal Y133 plays a major role in αSyn aggregate clearance by supporting the protective S129 phosphorylation for autophagy and by promoting proteasome clearance. C-terminal tyrosine nitration increases pathogenicity and can only be partially detoxified by αSyn di-tyrosine dimers. Our findings uncover a complex interplay between S129 phosphorylation and C-terminal tyrosine modifications of αSyn that likely participates in PD pathology.

No MeSH data available.


Related in: MedlinePlus

The human NGB gene for neuroglobin alters A30P and αSyn aggregation in yeast and mammalian cells.(A) Spotting analysis of YHB1 and Δyhb1 yeast cells co-expressing αSyn and GFP (control) with either empty vector as control or YHB1 and NGB, respectively, on non-inducing and galactose-inducing SC-Ura medium after 3 days. (B) Quantification of the percentage of cells displaying αSyn aggregates after 6 h induction in galactose-containing medium (n = 3). (C) Spotting analysis of YHB1 and Δyhb1 yeast cells co-expressing A30P and GFP (control) with either empty vector (pME2788) as control or YHB1 and NGB, respectively, on non-inducing and galactose-inducing SC-Ura medium after 3 days. (D) Quantification of the percentage of cells displaying A30P aggregates after 6 h induction in galactose-containing medium. Significance of differences was calculated with t-test (**, p < 0.01, n = 3). (E) Fluorescence microscopy of H4 cells co-expressing SynT, synphilin-1 and pcDNA (control) or NGB-mCherry. Nuclei are stained with Hoechst dye (blue). Scale bar = 30 μm. (F) Quantification of the percentage of H4 cells displaying αSyn inclusions after 48 h after transfection. Cells were classified into three groups according to the number of αSyn-immunoreactive inclusions observed: cells with 10 inclusions, cells with less than 10 inclusions and cells without inclusions. Significance of differences was calculated with t-test (*, p < 0.05, n = 3). (G) Lactate dehydrogenase (LDH) activity measurements support that NGB is non-toxic for H4 cells. H4 cells transfected with empty mammalian expression vector pcDNA3.1, with empty pcDNA3.1 or pcDNA3.1 encoding neuroglobin-mCherry (NGB) together with SynT and synphilin-1 (SynT+Synphilin-1) were analyzed. Media from indicated H4 cells were collected and the secretion of lactate LDH was determined as a measure of cytotoxicity. Significance of differences was calculated with t-test (not significant (n.s.); n = 3).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4920419&req=5

pgen.1006098.g009: The human NGB gene for neuroglobin alters A30P and αSyn aggregation in yeast and mammalian cells.(A) Spotting analysis of YHB1 and Δyhb1 yeast cells co-expressing αSyn and GFP (control) with either empty vector as control or YHB1 and NGB, respectively, on non-inducing and galactose-inducing SC-Ura medium after 3 days. (B) Quantification of the percentage of cells displaying αSyn aggregates after 6 h induction in galactose-containing medium (n = 3). (C) Spotting analysis of YHB1 and Δyhb1 yeast cells co-expressing A30P and GFP (control) with either empty vector (pME2788) as control or YHB1 and NGB, respectively, on non-inducing and galactose-inducing SC-Ura medium after 3 days. (D) Quantification of the percentage of cells displaying A30P aggregates after 6 h induction in galactose-containing medium. Significance of differences was calculated with t-test (**, p < 0.01, n = 3). (E) Fluorescence microscopy of H4 cells co-expressing SynT, synphilin-1 and pcDNA (control) or NGB-mCherry. Nuclei are stained with Hoechst dye (blue). Scale bar = 30 μm. (F) Quantification of the percentage of H4 cells displaying αSyn inclusions after 48 h after transfection. Cells were classified into three groups according to the number of αSyn-immunoreactive inclusions observed: cells with 10 inclusions, cells with less than 10 inclusions and cells without inclusions. Significance of differences was calculated with t-test (*, p < 0.05, n = 3). (G) Lactate dehydrogenase (LDH) activity measurements support that NGB is non-toxic for H4 cells. H4 cells transfected with empty mammalian expression vector pcDNA3.1, with empty pcDNA3.1 or pcDNA3.1 encoding neuroglobin-mCherry (NGB) together with SynT and synphilin-1 (SynT+Synphilin-1) were analyzed. Media from indicated H4 cells were collected and the secretion of lactate LDH was determined as a measure of cytotoxicity. Significance of differences was calculated with t-test (not significant (n.s.); n = 3).

Mentions: A BLAST search for human genes corresponding to yeast YHB1 revealed 49% similarities of the YHB1 globin domain to human neuroglobin (NGB) as a putative homolog. We analyzed whether the human counterpart of yeast YHB1 can affect αSyn aggregation. Neuroglobins are oxygen-binding proteins that are highly conserved among vertebrates and are expressed in the central and peripheral nervous system. They provide protection against hypoxic induced cell injury in the brain, which is associated with ROS and RNS accumulation [79]. Both Yhb1 and neuroglobin contain a globin domain and are members of the globin gene family. NGB was shown to diminish beta-amyloid-induced neurotoxicity in vitro and to attenuate the phenotypes in a transgenic mouse model of Alzheimer’s disease [80] and to act as an oxidative stress-responsive sensor for neuroprotection [81]. Here we examined, whether human NGB affects αSyn or A30P growth and aggregate formation in yeast. Growth and aggregation of αSyn was not changed by the expression of the human NGB (Fig 9A and 9B). However, NGB expression in Δyhb1 deletion strain rescued A30P yeast growth (Fig 9C) and reduced the number of cells with A30P aggregates (Fig 9D). The effect of NGB in yeast is similar to the impact of YHB1 on αSyn and A30P growth and aggregate formation (Fig 5C).


C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease.

Kleinknecht A, Popova B, Lázaro DF, Pinho R, Valerius O, Outeiro TF, Braus GH - PLoS Genet. (2016)

The human NGB gene for neuroglobin alters A30P and αSyn aggregation in yeast and mammalian cells.(A) Spotting analysis of YHB1 and Δyhb1 yeast cells co-expressing αSyn and GFP (control) with either empty vector as control or YHB1 and NGB, respectively, on non-inducing and galactose-inducing SC-Ura medium after 3 days. (B) Quantification of the percentage of cells displaying αSyn aggregates after 6 h induction in galactose-containing medium (n = 3). (C) Spotting analysis of YHB1 and Δyhb1 yeast cells co-expressing A30P and GFP (control) with either empty vector (pME2788) as control or YHB1 and NGB, respectively, on non-inducing and galactose-inducing SC-Ura medium after 3 days. (D) Quantification of the percentage of cells displaying A30P aggregates after 6 h induction in galactose-containing medium. Significance of differences was calculated with t-test (**, p < 0.01, n = 3). (E) Fluorescence microscopy of H4 cells co-expressing SynT, synphilin-1 and pcDNA (control) or NGB-mCherry. Nuclei are stained with Hoechst dye (blue). Scale bar = 30 μm. (F) Quantification of the percentage of H4 cells displaying αSyn inclusions after 48 h after transfection. Cells were classified into three groups according to the number of αSyn-immunoreactive inclusions observed: cells with 10 inclusions, cells with less than 10 inclusions and cells without inclusions. Significance of differences was calculated with t-test (*, p < 0.05, n = 3). (G) Lactate dehydrogenase (LDH) activity measurements support that NGB is non-toxic for H4 cells. H4 cells transfected with empty mammalian expression vector pcDNA3.1, with empty pcDNA3.1 or pcDNA3.1 encoding neuroglobin-mCherry (NGB) together with SynT and synphilin-1 (SynT+Synphilin-1) were analyzed. Media from indicated H4 cells were collected and the secretion of lactate LDH was determined as a measure of cytotoxicity. Significance of differences was calculated with t-test (not significant (n.s.); n = 3).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4920419&req=5

pgen.1006098.g009: The human NGB gene for neuroglobin alters A30P and αSyn aggregation in yeast and mammalian cells.(A) Spotting analysis of YHB1 and Δyhb1 yeast cells co-expressing αSyn and GFP (control) with either empty vector as control or YHB1 and NGB, respectively, on non-inducing and galactose-inducing SC-Ura medium after 3 days. (B) Quantification of the percentage of cells displaying αSyn aggregates after 6 h induction in galactose-containing medium (n = 3). (C) Spotting analysis of YHB1 and Δyhb1 yeast cells co-expressing A30P and GFP (control) with either empty vector (pME2788) as control or YHB1 and NGB, respectively, on non-inducing and galactose-inducing SC-Ura medium after 3 days. (D) Quantification of the percentage of cells displaying A30P aggregates after 6 h induction in galactose-containing medium. Significance of differences was calculated with t-test (**, p < 0.01, n = 3). (E) Fluorescence microscopy of H4 cells co-expressing SynT, synphilin-1 and pcDNA (control) or NGB-mCherry. Nuclei are stained with Hoechst dye (blue). Scale bar = 30 μm. (F) Quantification of the percentage of H4 cells displaying αSyn inclusions after 48 h after transfection. Cells were classified into three groups according to the number of αSyn-immunoreactive inclusions observed: cells with 10 inclusions, cells with less than 10 inclusions and cells without inclusions. Significance of differences was calculated with t-test (*, p < 0.05, n = 3). (G) Lactate dehydrogenase (LDH) activity measurements support that NGB is non-toxic for H4 cells. H4 cells transfected with empty mammalian expression vector pcDNA3.1, with empty pcDNA3.1 or pcDNA3.1 encoding neuroglobin-mCherry (NGB) together with SynT and synphilin-1 (SynT+Synphilin-1) were analyzed. Media from indicated H4 cells were collected and the secretion of lactate LDH was determined as a measure of cytotoxicity. Significance of differences was calculated with t-test (not significant (n.s.); n = 3).
Mentions: A BLAST search for human genes corresponding to yeast YHB1 revealed 49% similarities of the YHB1 globin domain to human neuroglobin (NGB) as a putative homolog. We analyzed whether the human counterpart of yeast YHB1 can affect αSyn aggregation. Neuroglobins are oxygen-binding proteins that are highly conserved among vertebrates and are expressed in the central and peripheral nervous system. They provide protection against hypoxic induced cell injury in the brain, which is associated with ROS and RNS accumulation [79]. Both Yhb1 and neuroglobin contain a globin domain and are members of the globin gene family. NGB was shown to diminish beta-amyloid-induced neurotoxicity in vitro and to attenuate the phenotypes in a transgenic mouse model of Alzheimer’s disease [80] and to act as an oxidative stress-responsive sensor for neuroprotection [81]. Here we examined, whether human NGB affects αSyn or A30P growth and aggregate formation in yeast. Growth and aggregation of αSyn was not changed by the expression of the human NGB (Fig 9A and 9B). However, NGB expression in Δyhb1 deletion strain rescued A30P yeast growth (Fig 9C) and reduced the number of cells with A30P aggregates (Fig 9D). The effect of NGB in yeast is similar to the impact of YHB1 on αSyn and A30P growth and aggregate formation (Fig 5C).

Bottom Line: Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies.Using a yeast model of PD, we found that Y133 is required for protective S129 phosphorylation and for S129-independent proteasome clearance. αSyn can be nitrated and form stable covalent dimers originating from covalent crosslinking of two tyrosine residues.The nitration level of wild-type αSyn was higher compared to that of A30P mutant that is non-toxic in yeast.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany.

ABSTRACT
Parkinson´s disease (PD) is characterized by the presence of proteinaceous inclusions called Lewy bodies that are mainly composed of α-synuclein (αSyn). Elevated levels of oxidative or nitrative stresses have been implicated in αSyn related toxicity. Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies. The neighboring tyrosine residues Y125, Y133 and Y136 are phosphorylation and nitration sites. Using a yeast model of PD, we found that Y133 is required for protective S129 phosphorylation and for S129-independent proteasome clearance. αSyn can be nitrated and form stable covalent dimers originating from covalent crosslinking of two tyrosine residues. Nitrated tyrosine residues, but not di-tyrosine-crosslinked dimers, contributed to αSyn cytotoxicity and aggregation. Analysis of tyrosine residues involved in nitration and crosslinking revealed that the C-terminus, rather than the N-terminus of αSyn, is modified by nitration and di-tyrosine formation. The nitration level of wild-type αSyn was higher compared to that of A30P mutant that is non-toxic in yeast. A30P formed more dimers than wild-type αSyn, suggesting that dimer formation represents a cellular detoxification pathway in yeast. Deletion of the yeast flavohemoglobin gene YHB1 resulted in an increase of cellular nitrative stress and cytotoxicity leading to enhanced aggregation of A30P αSyn. Yhb1 protected yeast from A30P-induced mitochondrial fragmentation and peroxynitrite-induced nitrative stress. Strikingly, overexpression of neuroglobin, the human homolog of YHB1, protected against αSyn inclusion formation in mammalian cells. In total, our data suggest that C-terminal Y133 plays a major role in αSyn aggregate clearance by supporting the protective S129 phosphorylation for autophagy and by promoting proteasome clearance. C-terminal tyrosine nitration increases pathogenicity and can only be partially detoxified by αSyn di-tyrosine dimers. Our findings uncover a complex interplay between S129 phosphorylation and C-terminal tyrosine modifications of αSyn that likely participates in PD pathology.

No MeSH data available.


Related in: MedlinePlus