Limits...
No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults.

Lippelt DP, van der Kint S, van Herk K, Naber M - PLoS ONE (2016)

Bottom Line: We found that choline did not significantly enhance memory performance during any of the tasks.The hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics.We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants.

View Article: PubMed Central - PubMed

Affiliation: Cognitive Psychology, Leiden University, Wassenaarseweg 52, Leiden, 2333AK, The Netherlands.

ABSTRACT
Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0-2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants.

No MeSH data available.


Timeline, procedure, and stimuli of the visuospatial working memory task of experiment 1.Participants received a 2 gram dose of either choline bitartrate or placebo in 2 separate sessions (cross-over design). A half hour after ingestion participants were allowed to eat some fruit and another half hour later they performed a visuospatial memory task (a). Mood & arousal, heart rate, and blood pressure (MA,HR,BP) were assessed 3 times during each session. The memory task was divided into 3 test blocks per session. In each block, participants completed 5 trials in which they had to memorize and consecutively indicate each of the location of the 9 target pictures. Pictures were shown for 10 seconds during which participants were supposed to memorize the locations of each picture (b). Pictures were then masked for 4 seconds and participants could subsequently indicate the location of the targets (random presentation order) with a computer mouse. Feedback was given by changing the target in a green (correct location) or red (incorrect location) patch. Pictures were shown in color but are here displayed in grayscale. The background color was grey during the experiment but is here displayed in white for aesthetical reasons.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4920398&req=5

pone.0157714.g001: Timeline, procedure, and stimuli of the visuospatial working memory task of experiment 1.Participants received a 2 gram dose of either choline bitartrate or placebo in 2 separate sessions (cross-over design). A half hour after ingestion participants were allowed to eat some fruit and another half hour later they performed a visuospatial memory task (a). Mood & arousal, heart rate, and blood pressure (MA,HR,BP) were assessed 3 times during each session. The memory task was divided into 3 test blocks per session. In each block, participants completed 5 trials in which they had to memorize and consecutively indicate each of the location of the 9 target pictures. Pictures were shown for 10 seconds during which participants were supposed to memorize the locations of each picture (b). Pictures were then masked for 4 seconds and participants could subsequently indicate the location of the targets (random presentation order) with a computer mouse. Feedback was given by changing the target in a green (correct location) or red (incorrect location) patch. Pictures were shown in color but are here displayed in grayscale. The background color was grey during the experiment but is here displayed in white for aesthetical reasons.

Mentions: The visuospatial memory task consisted of an adapted version of the popular children’s game “Memory” that is known to depend on cholinergic functioning in healthy human adults [61]. Participants played three blocks per session and the same pictures were presented in each block to facilitate learning. Each block consisted of 5 distinct trials (i.e., 5 distinct sets of 9 different pictures) in which participants had to memorize the location of 9 target pictures (150 by 225 pixels). The targets were simultaneously shown for 10 seconds in a 3-by-3 grid on a grey background (see Fig 1). To prevent that the task would be too easy and that participants would memorize simple features instead of entire pictures, the pictures were selected from a set of natural images [62] exclusively consisting of cluttered scenes of trees and plants and without individual objects and animals. Pictures were masked after presentation with a checkerboard pattern for 4 seconds. This was followed by a cue of the target picture that was shown below the grid. Participants had to retrieve the location of the target image from memory and click on its previous location with a computer mouse cursor. The image at the selected location then became visible for 2 seconds and the cue turned green or red depending on whether the participant had correctly or incorrectly indicated the location of the target, respectively. The next target was automatically shown following the feedback display and each of the 9 picture locations was consecutively tested within a trial. A total of 45 (5 x 9) pictures were tested within a block and each block lasted approximately 5 minutes. Participants were debriefed about the purpose of the experiment after the second session.


No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults.

Lippelt DP, van der Kint S, van Herk K, Naber M - PLoS ONE (2016)

Timeline, procedure, and stimuli of the visuospatial working memory task of experiment 1.Participants received a 2 gram dose of either choline bitartrate or placebo in 2 separate sessions (cross-over design). A half hour after ingestion participants were allowed to eat some fruit and another half hour later they performed a visuospatial memory task (a). Mood & arousal, heart rate, and blood pressure (MA,HR,BP) were assessed 3 times during each session. The memory task was divided into 3 test blocks per session. In each block, participants completed 5 trials in which they had to memorize and consecutively indicate each of the location of the 9 target pictures. Pictures were shown for 10 seconds during which participants were supposed to memorize the locations of each picture (b). Pictures were then masked for 4 seconds and participants could subsequently indicate the location of the targets (random presentation order) with a computer mouse. Feedback was given by changing the target in a green (correct location) or red (incorrect location) patch. Pictures were shown in color but are here displayed in grayscale. The background color was grey during the experiment but is here displayed in white for aesthetical reasons.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4920398&req=5

pone.0157714.g001: Timeline, procedure, and stimuli of the visuospatial working memory task of experiment 1.Participants received a 2 gram dose of either choline bitartrate or placebo in 2 separate sessions (cross-over design). A half hour after ingestion participants were allowed to eat some fruit and another half hour later they performed a visuospatial memory task (a). Mood & arousal, heart rate, and blood pressure (MA,HR,BP) were assessed 3 times during each session. The memory task was divided into 3 test blocks per session. In each block, participants completed 5 trials in which they had to memorize and consecutively indicate each of the location of the 9 target pictures. Pictures were shown for 10 seconds during which participants were supposed to memorize the locations of each picture (b). Pictures were then masked for 4 seconds and participants could subsequently indicate the location of the targets (random presentation order) with a computer mouse. Feedback was given by changing the target in a green (correct location) or red (incorrect location) patch. Pictures were shown in color but are here displayed in grayscale. The background color was grey during the experiment but is here displayed in white for aesthetical reasons.
Mentions: The visuospatial memory task consisted of an adapted version of the popular children’s game “Memory” that is known to depend on cholinergic functioning in healthy human adults [61]. Participants played three blocks per session and the same pictures were presented in each block to facilitate learning. Each block consisted of 5 distinct trials (i.e., 5 distinct sets of 9 different pictures) in which participants had to memorize the location of 9 target pictures (150 by 225 pixels). The targets were simultaneously shown for 10 seconds in a 3-by-3 grid on a grey background (see Fig 1). To prevent that the task would be too easy and that participants would memorize simple features instead of entire pictures, the pictures were selected from a set of natural images [62] exclusively consisting of cluttered scenes of trees and plants and without individual objects and animals. Pictures were masked after presentation with a checkerboard pattern for 4 seconds. This was followed by a cue of the target picture that was shown below the grid. Participants had to retrieve the location of the target image from memory and click on its previous location with a computer mouse cursor. The image at the selected location then became visible for 2 seconds and the cue turned green or red depending on whether the participant had correctly or incorrectly indicated the location of the target, respectively. The next target was automatically shown following the feedback display and each of the 9 picture locations was consecutively tested within a trial. A total of 45 (5 x 9) pictures were tested within a block and each block lasted approximately 5 minutes. Participants were debriefed about the purpose of the experiment after the second session.

Bottom Line: We found that choline did not significantly enhance memory performance during any of the tasks.The hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics.We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants.

View Article: PubMed Central - PubMed

Affiliation: Cognitive Psychology, Leiden University, Wassenaarseweg 52, Leiden, 2333AK, The Netherlands.

ABSTRACT
Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0-2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants.

No MeSH data available.