Limits...
Contribution of the Arterial System and the Heart to Blood Pressure during Normal Aging - A Simulation Study.

Maksuti E, Westerhof N, Westerhof BE, Broomé M, Stergiopulos N - PLoS ONE (2016)

Bottom Line: In the present study we quantified the blood pressure changes in normal aging by using a Windkessel model for the arterial system and the time-varying elastance model for the heart, and compared the simulation results with data from the Framingham Heart Study.Our results show that not only the arterial system, but also the heart, contributes to the changes in blood pressure during aging.The changes in arterial properties initiate a systolic pressure increase, which in turn initiates a cardiac remodelling process that further augments systolic pressure and mitigates the decrease in diastolic pressure.

View Article: PubMed Central - PubMed

Affiliation: Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.

ABSTRACT
During aging, systolic blood pressure continuously increases over time, whereas diastolic pressure first increases and then slightly decreases after middle age. These pressure changes are usually explained by changes of the arterial system alone (increase in arterial stiffness and vascular resistance). However, we hypothesise that the heart contributes to the age-related blood pressure progression as well. In the present study we quantified the blood pressure changes in normal aging by using a Windkessel model for the arterial system and the time-varying elastance model for the heart, and compared the simulation results with data from the Framingham Heart Study. Parameters representing arterial changes (resistance and stiffness) during aging were based on literature values, whereas parameters representing cardiac changes were computed through physiological rules (compensated hypertrophy and preservation of end-diastolic volume). When taking into account arterial changes only, the systolic and diastolic pressure did not agree well with the population data. Between 20 and 80 years, systolic pressure increased from 100 to 122 mmHg, and diastolic pressure decreased from 76 to 55 mmHg. When taking cardiac adaptations into account as well, systolic and diastolic pressure increased from 100 to 151 mmHg and decreased from 76 to 69 mmHg, respectively. Our results show that not only the arterial system, but also the heart, contributes to the changes in blood pressure during aging. The changes in arterial properties initiate a systolic pressure increase, which in turn initiates a cardiac remodelling process that further augments systolic pressure and mitigates the decrease in diastolic pressure.

No MeSH data available.


Related in: MedlinePlus

Comparison between the model’s aortic systolic and diastolic pressures changes with age and population data for brachial pressure.(On the left) Simulations for arterial parameter changes only and (on the right) for arterial and cardiac parameter changes combined. Parameters for the arterial changes are prescribed, whereas parameters for the cardiac changes are computed through physiological rules. The thin grey line represents derived brachial systolic pressure, obtained accounting for the amplification between aortic and brachial systolic pressure based on data reported by Avolio et al. [23].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4920393&req=5

pone.0157493.g004: Comparison between the model’s aortic systolic and diastolic pressures changes with age and population data for brachial pressure.(On the left) Simulations for arterial parameter changes only and (on the right) for arterial and cardiac parameter changes combined. Parameters for the arterial changes are prescribed, whereas parameters for the cardiac changes are computed through physiological rules. The thin grey line represents derived brachial systolic pressure, obtained accounting for the amplification between aortic and brachial systolic pressure based on data reported by Avolio et al. [23].

Mentions: A comparison between the model’s systolic and diastolic aortic pressure as a function of age and population data is presented in Fig 4. Results are presented for arterial changes only and for arterial plus cardiac changes combined. When taking into account arterial changes only, systolic blood pressure increased from 100 to 122 mmHg and diastolic blood pressure decreased from 76 to 55 mmHg. These calculated blood pressure values do not conform to the arterial pressure values reported in the Framingham Heart Study [1], as can be seen in Fig 4. In this case, when only arterial changes were applied, the calculated stroke volume decreased by approximately 20% between the ages of 20 and 80 years.


Contribution of the Arterial System and the Heart to Blood Pressure during Normal Aging - A Simulation Study.

Maksuti E, Westerhof N, Westerhof BE, Broomé M, Stergiopulos N - PLoS ONE (2016)

Comparison between the model’s aortic systolic and diastolic pressures changes with age and population data for brachial pressure.(On the left) Simulations for arterial parameter changes only and (on the right) for arterial and cardiac parameter changes combined. Parameters for the arterial changes are prescribed, whereas parameters for the cardiac changes are computed through physiological rules. The thin grey line represents derived brachial systolic pressure, obtained accounting for the amplification between aortic and brachial systolic pressure based on data reported by Avolio et al. [23].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4920393&req=5

pone.0157493.g004: Comparison between the model’s aortic systolic and diastolic pressures changes with age and population data for brachial pressure.(On the left) Simulations for arterial parameter changes only and (on the right) for arterial and cardiac parameter changes combined. Parameters for the arterial changes are prescribed, whereas parameters for the cardiac changes are computed through physiological rules. The thin grey line represents derived brachial systolic pressure, obtained accounting for the amplification between aortic and brachial systolic pressure based on data reported by Avolio et al. [23].
Mentions: A comparison between the model’s systolic and diastolic aortic pressure as a function of age and population data is presented in Fig 4. Results are presented for arterial changes only and for arterial plus cardiac changes combined. When taking into account arterial changes only, systolic blood pressure increased from 100 to 122 mmHg and diastolic blood pressure decreased from 76 to 55 mmHg. These calculated blood pressure values do not conform to the arterial pressure values reported in the Framingham Heart Study [1], as can be seen in Fig 4. In this case, when only arterial changes were applied, the calculated stroke volume decreased by approximately 20% between the ages of 20 and 80 years.

Bottom Line: In the present study we quantified the blood pressure changes in normal aging by using a Windkessel model for the arterial system and the time-varying elastance model for the heart, and compared the simulation results with data from the Framingham Heart Study.Our results show that not only the arterial system, but also the heart, contributes to the changes in blood pressure during aging.The changes in arterial properties initiate a systolic pressure increase, which in turn initiates a cardiac remodelling process that further augments systolic pressure and mitigates the decrease in diastolic pressure.

View Article: PubMed Central - PubMed

Affiliation: Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.

ABSTRACT
During aging, systolic blood pressure continuously increases over time, whereas diastolic pressure first increases and then slightly decreases after middle age. These pressure changes are usually explained by changes of the arterial system alone (increase in arterial stiffness and vascular resistance). However, we hypothesise that the heart contributes to the age-related blood pressure progression as well. In the present study we quantified the blood pressure changes in normal aging by using a Windkessel model for the arterial system and the time-varying elastance model for the heart, and compared the simulation results with data from the Framingham Heart Study. Parameters representing arterial changes (resistance and stiffness) during aging were based on literature values, whereas parameters representing cardiac changes were computed through physiological rules (compensated hypertrophy and preservation of end-diastolic volume). When taking into account arterial changes only, the systolic and diastolic pressure did not agree well with the population data. Between 20 and 80 years, systolic pressure increased from 100 to 122 mmHg, and diastolic pressure decreased from 76 to 55 mmHg. When taking cardiac adaptations into account as well, systolic and diastolic pressure increased from 100 to 151 mmHg and decreased from 76 to 69 mmHg, respectively. Our results show that not only the arterial system, but also the heart, contributes to the changes in blood pressure during aging. The changes in arterial properties initiate a systolic pressure increase, which in turn initiates a cardiac remodelling process that further augments systolic pressure and mitigates the decrease in diastolic pressure.

No MeSH data available.


Related in: MedlinePlus