Limits...
Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish.

Frohnhöfer HG, Geiger-Rudolph S, Pattky M, Meixner M, Huhn C, Maischein HM, Geisler R, Gehring I, Maderspacher F, Nüsslein-Volhard C, Irion U - Biol Open (2016)

Bottom Line: Here we identify idefix, a mutation in the zebrafish gene encoding the enzyme spermidine synthase, leading to a severe reduction in spermidine levels as shown by capillary electrophoresis-mass spectrometry.This allows us to uncouple them from events occurring later during colour patterning.Thus, zebrafish provide a vertebrate model to study the in vivo effects of polyamines.

View Article: PubMed Central - PubMed

Affiliation: Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany.

No MeSH data available.


Related in: MedlinePlus

The idefix phenotype first becomes visible during metamorphosis. (A,B) Wild-type and ide mutant zebrafish at stage SP, 9.5 mm standard length. In the mutants the boundaries between the first light stripe and the developing dark stripes are less regular than in wild type. (C-D′) At stage J++, 16 mm standard length, the ide phenotype is fully visible. The light stripe area is wider than in wild type and only two dark stripes develop. The xanthophore densities in the light stripes are similar in wild type and ide mutants (C′,D′). Scale bars: 1 mm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4920196&req=5

BIO018721F2: The idefix phenotype first becomes visible during metamorphosis. (A,B) Wild-type and ide mutant zebrafish at stage SP, 9.5 mm standard length. In the mutants the boundaries between the first light stripe and the developing dark stripes are less regular than in wild type. (C-D′) At stage J++, 16 mm standard length, the ide phenotype is fully visible. The light stripe area is wider than in wild type and only two dark stripes develop. The xanthophore densities in the light stripes are similar in wild type and ide mutants (C′,D′). Scale bars: 1 mm.

Mentions: The ide phenotype develops during metamorphosis, the early larval pattern is not altered in the mutants. The mutant phenotype is clearly visible at stage SP (9.5 mm SL), with the first light stripe being noticeably wider than in wild type (Fig. 2A-D). The density of xanthophores in the light stripes is not altered in ide mutants.Fig. 2.


Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish.

Frohnhöfer HG, Geiger-Rudolph S, Pattky M, Meixner M, Huhn C, Maischein HM, Geisler R, Gehring I, Maderspacher F, Nüsslein-Volhard C, Irion U - Biol Open (2016)

The idefix phenotype first becomes visible during metamorphosis. (A,B) Wild-type and ide mutant zebrafish at stage SP, 9.5 mm standard length. In the mutants the boundaries between the first light stripe and the developing dark stripes are less regular than in wild type. (C-D′) At stage J++, 16 mm standard length, the ide phenotype is fully visible. The light stripe area is wider than in wild type and only two dark stripes develop. The xanthophore densities in the light stripes are similar in wild type and ide mutants (C′,D′). Scale bars: 1 mm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4920196&req=5

BIO018721F2: The idefix phenotype first becomes visible during metamorphosis. (A,B) Wild-type and ide mutant zebrafish at stage SP, 9.5 mm standard length. In the mutants the boundaries between the first light stripe and the developing dark stripes are less regular than in wild type. (C-D′) At stage J++, 16 mm standard length, the ide phenotype is fully visible. The light stripe area is wider than in wild type and only two dark stripes develop. The xanthophore densities in the light stripes are similar in wild type and ide mutants (C′,D′). Scale bars: 1 mm.
Mentions: The ide phenotype develops during metamorphosis, the early larval pattern is not altered in the mutants. The mutant phenotype is clearly visible at stage SP (9.5 mm SL), with the first light stripe being noticeably wider than in wild type (Fig. 2A-D). The density of xanthophores in the light stripes is not altered in ide mutants.Fig. 2.

Bottom Line: Here we identify idefix, a mutation in the zebrafish gene encoding the enzyme spermidine synthase, leading to a severe reduction in spermidine levels as shown by capillary electrophoresis-mass spectrometry.This allows us to uncouple them from events occurring later during colour patterning.Thus, zebrafish provide a vertebrate model to study the in vivo effects of polyamines.

View Article: PubMed Central - PubMed

Affiliation: Max-Planck-Institut für Entwicklungsbiologie, Abteilung 3, Spemannstrasse 35, Tübingen 72076, Germany.

No MeSH data available.


Related in: MedlinePlus