Limits...
Toxicological Risks of Agrochemical Spray Adjuvants: Organosilicone Surfactants May Not Be Safe.

Mullin CA, Fine JD, Reynolds RD, Frazier MT - Front Public Health (2016)

Bottom Line: Based on the data for agrochemical applications to almonds from California Department of Pesticide Regulation, there has been increasing use of adjuvants, particularly organosilicone surfactants, during bloom when two-thirds of USA honey bee colonies are present.Increased tank mixing of these with ergosterol biosynthesis inhibitors and other fungicides and with insect growth regulator insecticides may be associated with recent USA honey bee declines.Organosilicone surfactants are good stand alone pesticides, toxic to bees, and are also present in drug and personal care products, particularly shampoos, and thus represent an important component of the chemical landscape to which pollinators and humans are exposed.

View Article: PubMed Central - PubMed

Affiliation: Department of Entomology, Center for Pollinator Research, The Pennsylvania State University , University Park, PA , USA.

ABSTRACT
Agrochemical risk assessment that takes into account only pesticide active ingredients without the spray adjuvants commonly used in their application will miss important toxicity outcomes detrimental to non-target species, including humans. Lack of disclosure of adjuvant and formulation ingredients coupled with a lack of adequate analytical methods constrains the assessment of total chemical load on beneficial organisms and the environment. Adjuvants generally enhance the pesticidal efficacy and inadvertently the non-target effects of the active ingredient. Spray adjuvants are largely assumed to be biologically inert and are not registered by the USA EPA, leaving their regulation and monitoring to individual states. Organosilicone surfactants are the most potent adjuvants and super-penetrants available to growers. Based on the data for agrochemical applications to almonds from California Department of Pesticide Regulation, there has been increasing use of adjuvants, particularly organosilicone surfactants, during bloom when two-thirds of USA honey bee colonies are present. Increased tank mixing of these with ergosterol biosynthesis inhibitors and other fungicides and with insect growth regulator insecticides may be associated with recent USA honey bee declines. This database archives every application of a spray tank adjuvant with detail that is unprecedented globally. Organosilicone surfactants are good stand alone pesticides, toxic to bees, and are also present in drug and personal care products, particularly shampoos, and thus represent an important component of the chemical landscape to which pollinators and humans are exposed. This mini review is the first to possibly link spray adjuvant use with declining health of honey bee populations.

No MeSH data available.


Related in: MedlinePlus

Total applications to almonds in Stanislaus County, CA, USA of synthetic pesticides by class (A) and by more selective class and individual pesticides (B) during January to March of 2001 through 2013 using an organsilicone surfactant.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4862968&req=5

Figure 2: Total applications to almonds in Stanislaus County, CA, USA of synthetic pesticides by class (A) and by more selective class and individual pesticides (B) during January to March of 2001 through 2013 using an organsilicone surfactant.

Mentions: We then conducted a detailed analysis of temporal trends in organosilicone applications for Stanislaus Co., a major almond producing county in California (57), which had the largest number of pesticide applications over our evaluation period. PUR records (55) were sorted by date, county/meridian/township/range/section (COMTRS) location, and amount of treated almond acres. Co-occurring and synonymous records were assumed to represent combined pesticide and adjuvant products within the same tank application mix. Based on this premise, most of the spray combinations comprised, in addition to one or more pesticide formulations, at least one tank adjuvant. Focused assessment was then made out of the total number and percentages of applications containing an OSSA, which included 45 products (Table S1 in Supplementary Material) dominated by Dyne-Amic®, Syl-Tac®, Sylgard 309®, RNA Si 100®, First Choice Break-Thru®, Freeway®, Kinetic®, Multi-Spred®, Widespread Max®, and Silwet L-77®. Similar combinations of products were assigned unique tank mix codes and resorted. Almost 10,000 pesticide applications on almonds in Stanislaus Co. contained an OSSA over the years evaluated, each on average to 40 acres. The greatest increase in major agrochemical inputs observed before and after onset of CCD in 2006 was the tripling of total pesticide applications containing an OSSA from 587 in January–March 2001 to 1,781 in January–March 2006 (Figure 2A). Greater than 80% of these applications contained fungicides, followed by 10% insecticides, and 5% herbicides. Ergosterol biosynthesis inhibitor (EBI) fungicides and IGR insecticides were greatly increased, whereas herbicide and other insecticide applications were fairly static across this period (Figures 2A,B). Pristine® (a combination of boscalid and pyraclostrobin), chlorothalonil, and EBIs (propiconazole > myclobutanil > fenbuconazole > metconazole > difenoconazole) dominated the increasing trends in fungicide use at the onset of CCD (Figure 2B). The IGRs (diflubenzuron > methoxyfenozide > pyriproxyfen > tebufenozide) displayed the greatest increases among insecticides in spray tank mixes containing OSSA during the onset and continuation of CCD (Figure 2B). Concomitantly, greatest decreasing tendencies in almond pesticide applications were for other fungicides (cyprodinil, iprodione, and azoxystrobin) and the older EBI myclobutanil, while inputs of herbicides (primarily glyphosate, oxyfluorfen, and paraquat) with OSSA did not change markedly. Based on the CDPR data for agrochemical applications to California almonds during pollination, increasing adjuvant use, particularly the OSSAs, in tank mixes with fungicides, including EBIs, Pristine®, and chlorothalonil, and with IGR insecticides may be associated with recent USA honey bee declines.


Toxicological Risks of Agrochemical Spray Adjuvants: Organosilicone Surfactants May Not Be Safe.

Mullin CA, Fine JD, Reynolds RD, Frazier MT - Front Public Health (2016)

Total applications to almonds in Stanislaus County, CA, USA of synthetic pesticides by class (A) and by more selective class and individual pesticides (B) during January to March of 2001 through 2013 using an organsilicone surfactant.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4862968&req=5

Figure 2: Total applications to almonds in Stanislaus County, CA, USA of synthetic pesticides by class (A) and by more selective class and individual pesticides (B) during January to March of 2001 through 2013 using an organsilicone surfactant.
Mentions: We then conducted a detailed analysis of temporal trends in organosilicone applications for Stanislaus Co., a major almond producing county in California (57), which had the largest number of pesticide applications over our evaluation period. PUR records (55) were sorted by date, county/meridian/township/range/section (COMTRS) location, and amount of treated almond acres. Co-occurring and synonymous records were assumed to represent combined pesticide and adjuvant products within the same tank application mix. Based on this premise, most of the spray combinations comprised, in addition to one or more pesticide formulations, at least one tank adjuvant. Focused assessment was then made out of the total number and percentages of applications containing an OSSA, which included 45 products (Table S1 in Supplementary Material) dominated by Dyne-Amic®, Syl-Tac®, Sylgard 309®, RNA Si 100®, First Choice Break-Thru®, Freeway®, Kinetic®, Multi-Spred®, Widespread Max®, and Silwet L-77®. Similar combinations of products were assigned unique tank mix codes and resorted. Almost 10,000 pesticide applications on almonds in Stanislaus Co. contained an OSSA over the years evaluated, each on average to 40 acres. The greatest increase in major agrochemical inputs observed before and after onset of CCD in 2006 was the tripling of total pesticide applications containing an OSSA from 587 in January–March 2001 to 1,781 in January–March 2006 (Figure 2A). Greater than 80% of these applications contained fungicides, followed by 10% insecticides, and 5% herbicides. Ergosterol biosynthesis inhibitor (EBI) fungicides and IGR insecticides were greatly increased, whereas herbicide and other insecticide applications were fairly static across this period (Figures 2A,B). Pristine® (a combination of boscalid and pyraclostrobin), chlorothalonil, and EBIs (propiconazole > myclobutanil > fenbuconazole > metconazole > difenoconazole) dominated the increasing trends in fungicide use at the onset of CCD (Figure 2B). The IGRs (diflubenzuron > methoxyfenozide > pyriproxyfen > tebufenozide) displayed the greatest increases among insecticides in spray tank mixes containing OSSA during the onset and continuation of CCD (Figure 2B). Concomitantly, greatest decreasing tendencies in almond pesticide applications were for other fungicides (cyprodinil, iprodione, and azoxystrobin) and the older EBI myclobutanil, while inputs of herbicides (primarily glyphosate, oxyfluorfen, and paraquat) with OSSA did not change markedly. Based on the CDPR data for agrochemical applications to California almonds during pollination, increasing adjuvant use, particularly the OSSAs, in tank mixes with fungicides, including EBIs, Pristine®, and chlorothalonil, and with IGR insecticides may be associated with recent USA honey bee declines.

Bottom Line: Based on the data for agrochemical applications to almonds from California Department of Pesticide Regulation, there has been increasing use of adjuvants, particularly organosilicone surfactants, during bloom when two-thirds of USA honey bee colonies are present.Increased tank mixing of these with ergosterol biosynthesis inhibitors and other fungicides and with insect growth regulator insecticides may be associated with recent USA honey bee declines.Organosilicone surfactants are good stand alone pesticides, toxic to bees, and are also present in drug and personal care products, particularly shampoos, and thus represent an important component of the chemical landscape to which pollinators and humans are exposed.

View Article: PubMed Central - PubMed

Affiliation: Department of Entomology, Center for Pollinator Research, The Pennsylvania State University , University Park, PA , USA.

ABSTRACT
Agrochemical risk assessment that takes into account only pesticide active ingredients without the spray adjuvants commonly used in their application will miss important toxicity outcomes detrimental to non-target species, including humans. Lack of disclosure of adjuvant and formulation ingredients coupled with a lack of adequate analytical methods constrains the assessment of total chemical load on beneficial organisms and the environment. Adjuvants generally enhance the pesticidal efficacy and inadvertently the non-target effects of the active ingredient. Spray adjuvants are largely assumed to be biologically inert and are not registered by the USA EPA, leaving their regulation and monitoring to individual states. Organosilicone surfactants are the most potent adjuvants and super-penetrants available to growers. Based on the data for agrochemical applications to almonds from California Department of Pesticide Regulation, there has been increasing use of adjuvants, particularly organosilicone surfactants, during bloom when two-thirds of USA honey bee colonies are present. Increased tank mixing of these with ergosterol biosynthesis inhibitors and other fungicides and with insect growth regulator insecticides may be associated with recent USA honey bee declines. This database archives every application of a spray tank adjuvant with detail that is unprecedented globally. Organosilicone surfactants are good stand alone pesticides, toxic to bees, and are also present in drug and personal care products, particularly shampoos, and thus represent an important component of the chemical landscape to which pollinators and humans are exposed. This mini review is the first to possibly link spray adjuvant use with declining health of honey bee populations.

No MeSH data available.


Related in: MedlinePlus