Limits...
Genetic Contribution of Femoral Neck Bone Geometry to the Risk of Developing Osteoporosis: A Family-Based Study.

Hernandez-de Sosa N, Athanasiadis G, Malouf J, Laiz A, Marin A, Herrera S, Farrerons J, Soria JM, Casademont J - PLoS ONE (2016)

Bottom Line: The most significant correlations were observed at the genetic level (ρG).In conclusion, our findings suggest that a relatively simple and easy to use method based on DXA studies can provide useful data on properties of the Hip in clinical practice.Furthermore, our results provide a strong motivation for further studies in order to improve the understanding of the pathophysiological mechanism underlying bone architecture and the genetics of osteoporosis.

View Article: PubMed Central - PubMed

Affiliation: Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.

ABSTRACT
Femoral neck geometry parameters are believed to be as good as bone mineral density as independent factors in predicting hip fracture risk. This study was conducted to analyze the roles of genetic and environmental factors in femoral properties measured in a sample of Spanish families with osteoporotic fractures and extended genealogy. The "Genetic Analysis of Osteoporosis (GAO) Project" involved 11 extended families with a total number of 376 individuals. We studied three categorical phenotypes of particular clinical interest and we used a Hip structural analysis based on DXA to analyze 17 strength and geometrical phenotypes of the hip. All the femoral properties had highly significant heritability, ranging from 0.252 to 0.586. The most significant correlations were observed at the genetic level (ρG). Osteoporotic fracture status (Affected 2) and, particularly, low bone mass and osteoporotic condition (Affected 3) had the highest number of significant genetic correlations with diverse femoral properties. In conclusion, our findings suggest that a relatively simple and easy to use method based on DXA studies can provide useful data on properties of the Hip in clinical practice. Furthermore, our results provide a strong motivation for further studies in order to improve the understanding of the pathophysiological mechanism underlying bone architecture and the genetics of osteoporosis.

No MeSH data available.


Related in: MedlinePlus

Measurement of the femur geometric parameters.Structural traits: AB is the hip axis length (HAL), ACD is the femoral neck-shaft angle (NSA), EF is the Narrow Neck, HG is the Intertrochanteric and IJ is the Femoral Shaft.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4862643&req=5

pone.0154833.g002: Measurement of the femur geometric parameters.Structural traits: AB is the hip axis length (HAL), ACD is the femoral neck-shaft angle (NSA), EF is the Narrow Neck, HG is the Intertrochanteric and IJ is the Femoral Shaft.

Mentions: Spine, femur and whole-body DXA scans were performed on all participants using a Discovery dual energy X-ray absorptiometry (DXA) system with the APEX v2.3 software (Hologic, Bedford, MA, USA), following the manufacturer’s recommendations and analyzed by one expert technician. We used the HSA software to analyze strength and geometrical properties of the hip [30]. This program uses the distribution of mineral mass in a line of pixels across the bone to measure geometric properties of cross-sections in cut planes traversing the bone at that location [31]. Three regions were analyzed: (i) narrow neck (NN), across the narrowest diameter of the femoral neck; (ii) intertrochanteric (IT), along the bisector of the neck-shaft angle; and (iii) femoral shaft (FS), 2 cm distal to the midpoint of the lesser trochanter (Fig 2). For each region, the distribution of the bone mass across the bone was extracted and geometric properties were derived using diverse formulas described elsewhere [31]. The FNGP variables considered were the following: buckling ratio (BR), an index of bone structural instability indicating the risk of fracture by buckling; cross-sectional area (CSA), an indicator of bone axial compression strength; cortical thickness (CT), an indicator of mean cortical thickness; cross-sectional moment of inertia (CSMI), an index of structural rigidity; and section modulus (Z), an index of bone bending strength indicating the bending resistance of a tube.


Genetic Contribution of Femoral Neck Bone Geometry to the Risk of Developing Osteoporosis: A Family-Based Study.

Hernandez-de Sosa N, Athanasiadis G, Malouf J, Laiz A, Marin A, Herrera S, Farrerons J, Soria JM, Casademont J - PLoS ONE (2016)

Measurement of the femur geometric parameters.Structural traits: AB is the hip axis length (HAL), ACD is the femoral neck-shaft angle (NSA), EF is the Narrow Neck, HG is the Intertrochanteric and IJ is the Femoral Shaft.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4862643&req=5

pone.0154833.g002: Measurement of the femur geometric parameters.Structural traits: AB is the hip axis length (HAL), ACD is the femoral neck-shaft angle (NSA), EF is the Narrow Neck, HG is the Intertrochanteric and IJ is the Femoral Shaft.
Mentions: Spine, femur and whole-body DXA scans were performed on all participants using a Discovery dual energy X-ray absorptiometry (DXA) system with the APEX v2.3 software (Hologic, Bedford, MA, USA), following the manufacturer’s recommendations and analyzed by one expert technician. We used the HSA software to analyze strength and geometrical properties of the hip [30]. This program uses the distribution of mineral mass in a line of pixels across the bone to measure geometric properties of cross-sections in cut planes traversing the bone at that location [31]. Three regions were analyzed: (i) narrow neck (NN), across the narrowest diameter of the femoral neck; (ii) intertrochanteric (IT), along the bisector of the neck-shaft angle; and (iii) femoral shaft (FS), 2 cm distal to the midpoint of the lesser trochanter (Fig 2). For each region, the distribution of the bone mass across the bone was extracted and geometric properties were derived using diverse formulas described elsewhere [31]. The FNGP variables considered were the following: buckling ratio (BR), an index of bone structural instability indicating the risk of fracture by buckling; cross-sectional area (CSA), an indicator of bone axial compression strength; cortical thickness (CT), an indicator of mean cortical thickness; cross-sectional moment of inertia (CSMI), an index of structural rigidity; and section modulus (Z), an index of bone bending strength indicating the bending resistance of a tube.

Bottom Line: The most significant correlations were observed at the genetic level (ρG).In conclusion, our findings suggest that a relatively simple and easy to use method based on DXA studies can provide useful data on properties of the Hip in clinical practice.Furthermore, our results provide a strong motivation for further studies in order to improve the understanding of the pathophysiological mechanism underlying bone architecture and the genetics of osteoporosis.

View Article: PubMed Central - PubMed

Affiliation: Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.

ABSTRACT
Femoral neck geometry parameters are believed to be as good as bone mineral density as independent factors in predicting hip fracture risk. This study was conducted to analyze the roles of genetic and environmental factors in femoral properties measured in a sample of Spanish families with osteoporotic fractures and extended genealogy. The "Genetic Analysis of Osteoporosis (GAO) Project" involved 11 extended families with a total number of 376 individuals. We studied three categorical phenotypes of particular clinical interest and we used a Hip structural analysis based on DXA to analyze 17 strength and geometrical phenotypes of the hip. All the femoral properties had highly significant heritability, ranging from 0.252 to 0.586. The most significant correlations were observed at the genetic level (ρG). Osteoporotic fracture status (Affected 2) and, particularly, low bone mass and osteoporotic condition (Affected 3) had the highest number of significant genetic correlations with diverse femoral properties. In conclusion, our findings suggest that a relatively simple and easy to use method based on DXA studies can provide useful data on properties of the Hip in clinical practice. Furthermore, our results provide a strong motivation for further studies in order to improve the understanding of the pathophysiological mechanism underlying bone architecture and the genetics of osteoporosis.

No MeSH data available.


Related in: MedlinePlus