Limits...
Quantitative analysis of myocardial tissue with digital autofluorescence microscopy.

Jensen T, Holten-Rossing H, Svendsen IM, Jacobsen C, Vainer B - J Pathol Inform (2016)

Bottom Line: This data may provide a basic histological starting point from which further digital analysis including staining may benefit.The presented method is amply described as a prestain multicomponent quantitation and outlining tool for histological sections of cardiac tissue.The main perspective is the opportunity for combination with digital analysis of stained microsections, for which the method may provide an accurate digital framework.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

ABSTRACT

Background: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including staining may benefit.

Methods: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm are presented.

Results: It is shown that the autofluorescence intensity of unstained microsections at two different wavelengths is a suitable starting point for automated digital analysis of myocytes, fibrous tissue, lipofuscin, and the extracellular compartment. The output of the method is absolute quantitation along with accurate outlines of above-mentioned components. The digital quantitations are verified by comparison to point grid quantitations performed on the microsections after Van Gieson staining.

Conclusion: The presented method is amply described as a prestain multicomponent quantitation and outlining tool for histological sections of cardiac tissue. The main perspective is the opportunity for combination with digital analysis of stained microsections, for which the method may provide an accurate digital framework.

No MeSH data available.


Related in: MedlinePlus

High magnification image of a Van Gieson-stained area (a) and the corresponding black/white masks from the digital quantitations including fibrous tissue (b), extracellular phase (c), and lipofuscin (d). This particular section was selected as both solid fibrous tissue with strands down to a few micrometers (lower half) as well as hardly discernible network-like strands below 1 μm (e.g. the capillarized area central left) are represented
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4837794&req=5

Figure 2: High magnification image of a Van Gieson-stained area (a) and the corresponding black/white masks from the digital quantitations including fibrous tissue (b), extracellular phase (c), and lipofuscin (d). This particular section was selected as both solid fibrous tissue with strands down to a few micrometers (lower half) as well as hardly discernible network-like strands below 1 μm (e.g. the capillarized area central left) are represented

Mentions: Examples of fluorescence images. (a and b) The same area in the blue and the red filter, respectively. (c and d) The corresponding ratio images with (c) being the ratio of blue to red and (d) the ratio of red to blue. Intensity histograms with fitted standard deviations corresponding to the myocyte peaks are shown in the small insets. Van Gieson-staining and quantitations of the central parts of this microsection are displayed in Figure 2


Quantitative analysis of myocardial tissue with digital autofluorescence microscopy.

Jensen T, Holten-Rossing H, Svendsen IM, Jacobsen C, Vainer B - J Pathol Inform (2016)

High magnification image of a Van Gieson-stained area (a) and the corresponding black/white masks from the digital quantitations including fibrous tissue (b), extracellular phase (c), and lipofuscin (d). This particular section was selected as both solid fibrous tissue with strands down to a few micrometers (lower half) as well as hardly discernible network-like strands below 1 μm (e.g. the capillarized area central left) are represented
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4837794&req=5

Figure 2: High magnification image of a Van Gieson-stained area (a) and the corresponding black/white masks from the digital quantitations including fibrous tissue (b), extracellular phase (c), and lipofuscin (d). This particular section was selected as both solid fibrous tissue with strands down to a few micrometers (lower half) as well as hardly discernible network-like strands below 1 μm (e.g. the capillarized area central left) are represented
Mentions: Examples of fluorescence images. (a and b) The same area in the blue and the red filter, respectively. (c and d) The corresponding ratio images with (c) being the ratio of blue to red and (d) the ratio of red to blue. Intensity histograms with fitted standard deviations corresponding to the myocyte peaks are shown in the small insets. Van Gieson-staining and quantitations of the central parts of this microsection are displayed in Figure 2

Bottom Line: This data may provide a basic histological starting point from which further digital analysis including staining may benefit.The presented method is amply described as a prestain multicomponent quantitation and outlining tool for histological sections of cardiac tissue.The main perspective is the opportunity for combination with digital analysis of stained microsections, for which the method may provide an accurate digital framework.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

ABSTRACT

Background: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including staining may benefit.

Methods: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm are presented.

Results: It is shown that the autofluorescence intensity of unstained microsections at two different wavelengths is a suitable starting point for automated digital analysis of myocytes, fibrous tissue, lipofuscin, and the extracellular compartment. The output of the method is absolute quantitation along with accurate outlines of above-mentioned components. The digital quantitations are verified by comparison to point grid quantitations performed on the microsections after Van Gieson staining.

Conclusion: The presented method is amply described as a prestain multicomponent quantitation and outlining tool for histological sections of cardiac tissue. The main perspective is the opportunity for combination with digital analysis of stained microsections, for which the method may provide an accurate digital framework.

No MeSH data available.


Related in: MedlinePlus