Limits...
Current trends to measure implant stability

View Article: PubMed Central - PubMed

ABSTRACT

Implant stability plays a critical role for successful osseointegration. Successful osseointegration is a prerequisite for functional dental implants. Continuous monitoring in an objective and qualitative manner is important to determine the status of implant stability. Implant stability is measured at two different stages: Primary and secondary. Primary stability comes from mechanical engagement with cortical bone. Secondary stability is developed from regeneration and remodeling of the bone and tissue around the implant after insertion and affected by the primary stability, bone formation and remodelling. The time of functional loading is dependent upon the implant stability. Historically the gold standard method to evaluate stability were microscopic or histologic analysis, radiographs, however due to invasiveness of these methods and related ethical issues various other methods have been proposed like cutting torque resistance, reverse torque analysis, model analysis etc. It is, therefore, of an utmost importance to be able to access implant stability at various time points and to project a long term prognosis for successful therapy. Therefore this review focuses on the currently available methods for evaluation of implant stability.

No MeSH data available.


Stability analysis for oral implant osseointegration from clinical oral implants research (a-Tensional test, b- Pushout method, c-Pull out method, d-Insertiona/removal method, e-Periotest, f-Resonance frequency analysis) 2010;21:1-12
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4837777&req=5

Figure 1: Stability analysis for oral implant osseointegration from clinical oral implants research (a-Tensional test, b- Pushout method, c-Pull out method, d-Insertiona/removal method, e-Periotest, f-Resonance frequency analysis) 2010;21:1-12

Mentions: Push-out/pull-out test investigates the healing capabilities at the bone implant interface.[10] It measures interfacial shear strength by applying load parallel to the implant-bone interface. In the typical push-out or pull-out test [Figure 1], a cylinder-type implant is placed transcortically or intramedullarly in bone structures and then removed by applying a force parallel to the interface. The maximum load capability (or failure load) is defined as the maximum force on the force displacement plot, and the interfacial stiffness is visualized as the slope of a tangent approximately at the linear region of the force displacement curve before breakpoint. It is assessed during the healing period. However, the push-out and pull-out tests are only applicable for nonthreaded cylinder type implants, whereas most of clinically available fixtures are of threaded design, and their interfacial failures are solely dependent on shear stress without any consideration for either tensile or compressive stresses (Brunski et al. 2000, Chang et al. 2010). It is also technique sensitive.


Current trends to measure implant stability
Stability analysis for oral implant osseointegration from clinical oral implants research (a-Tensional test, b- Pushout method, c-Pull out method, d-Insertiona/removal method, e-Periotest, f-Resonance frequency analysis) 2010;21:1-12
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4837777&req=5

Figure 1: Stability analysis for oral implant osseointegration from clinical oral implants research (a-Tensional test, b- Pushout method, c-Pull out method, d-Insertiona/removal method, e-Periotest, f-Resonance frequency analysis) 2010;21:1-12
Mentions: Push-out/pull-out test investigates the healing capabilities at the bone implant interface.[10] It measures interfacial shear strength by applying load parallel to the implant-bone interface. In the typical push-out or pull-out test [Figure 1], a cylinder-type implant is placed transcortically or intramedullarly in bone structures and then removed by applying a force parallel to the interface. The maximum load capability (or failure load) is defined as the maximum force on the force displacement plot, and the interfacial stiffness is visualized as the slope of a tangent approximately at the linear region of the force displacement curve before breakpoint. It is assessed during the healing period. However, the push-out and pull-out tests are only applicable for nonthreaded cylinder type implants, whereas most of clinically available fixtures are of threaded design, and their interfacial failures are solely dependent on shear stress without any consideration for either tensile or compressive stresses (Brunski et al. 2000, Chang et al. 2010). It is also technique sensitive.

View Article: PubMed Central - PubMed

ABSTRACT

Implant stability plays a critical role for successful osseointegration. Successful osseointegration is a prerequisite for functional dental implants. Continuous monitoring in an objective and qualitative manner is important to determine the status of implant stability. Implant stability is measured at two different stages: Primary and secondary. Primary stability comes from mechanical engagement with cortical bone. Secondary stability is developed from regeneration and remodeling of the bone and tissue around the implant after insertion and affected by the primary stability, bone formation and remodelling. The time of functional loading is dependent upon the implant stability. Historically the gold standard method to evaluate stability were microscopic or histologic analysis, radiographs, however due to invasiveness of these methods and related ethical issues various other methods have been proposed like cutting torque resistance, reverse torque analysis, model analysis etc. It is, therefore, of an utmost importance to be able to access implant stability at various time points and to project a long term prognosis for successful therapy. Therefore this review focuses on the currently available methods for evaluation of implant stability.

No MeSH data available.