Limits...
Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload.

Bediz CS, Oniz A, Guducu C, Ural Demirci E, Ogut H, Gunay E, Cetinkaya C, Ozgoren M - Front Hum Neurosci (2016)

Bottom Line: When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test.HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP.This can become a valuable parameter for future studies on human factor.

View Article: PubMed Central - PubMed

Affiliation: Department of Physiology, Faculty of Medicine, Dokuz Eylul UniversityIzmir, Turkey; Department of Biophysics, Faculty of Medicine, Dokuz Eylul UniversityIzmir, Turkey.

ABSTRACT
Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and total-Hb). The magnitude of this impact might be related with the physical performance capacities of the individuals. This can become a valuable parameter for future studies on human factor.

No MeSH data available.


Related in: MedlinePlus

The demonstration of functional near infrared spectroscopy (fNIRS) sensor pad. Brain oxygenation was measured from 16 locations over the forehead area via fNIRS sensor (left side). The sensor pad has 4 light sources, 10 light detectors and 16 optodes (right side). Optodes that are located on the leftmost side of the forehead namely 1, 2, 3 and 4 denotes left prefrontal cortex (PFC), optodes that are centrally located as 7, 8, 9 and 10 denotes central PFC, and optodes that are located on the rightmost side as 13, 14, 15 and 16 denotes right PFC.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4837702&req=5

Figure 2: The demonstration of functional near infrared spectroscopy (fNIRS) sensor pad. Brain oxygenation was measured from 16 locations over the forehead area via fNIRS sensor (left side). The sensor pad has 4 light sources, 10 light detectors and 16 optodes (right side). Optodes that are located on the leftmost side of the forehead namely 1, 2, 3 and 4 denotes left prefrontal cortex (PFC), optodes that are centrally located as 7, 8, 9 and 10 denotes central PFC, and optodes that are located on the rightmost side as 13, 14, 15 and 16 denotes right PFC.

Mentions: The raw intensity measurements at 730, and 850 nm were Butterworth low-pass filtered with MATLAB program (MATLAB and Statistics Toolbox, 2007). Butterworth filter was designed to eliminate possible respiration and heart rate signals and unwanted high frequency noise (Huppert et al., 2009). The artifact removal process has been made according to Ayaz et al. (2012). The PFC oxygenation data retrieved via fNIRS were examined in right, left and central PFC areas and defined as region of interest (ROI; Figure 2). Optodes that are located on the leftmost side of the forehead namely 1, 2, 3 and 4 combined to denote left PFC, optodes that are centrally located as 7, 8, 9 and 10 combined to denote central PFC, and optodes that are located on the rightmost side as 13, 14, 15 and 16 combined to denote right PFC. fNIRS signals were calculated and averaged over the whole pre- and post-exercise 2-Back sessions (Endo et al., 2013).


Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload.

Bediz CS, Oniz A, Guducu C, Ural Demirci E, Ogut H, Gunay E, Cetinkaya C, Ozgoren M - Front Hum Neurosci (2016)

The demonstration of functional near infrared spectroscopy (fNIRS) sensor pad. Brain oxygenation was measured from 16 locations over the forehead area via fNIRS sensor (left side). The sensor pad has 4 light sources, 10 light detectors and 16 optodes (right side). Optodes that are located on the leftmost side of the forehead namely 1, 2, 3 and 4 denotes left prefrontal cortex (PFC), optodes that are centrally located as 7, 8, 9 and 10 denotes central PFC, and optodes that are located on the rightmost side as 13, 14, 15 and 16 denotes right PFC.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4837702&req=5

Figure 2: The demonstration of functional near infrared spectroscopy (fNIRS) sensor pad. Brain oxygenation was measured from 16 locations over the forehead area via fNIRS sensor (left side). The sensor pad has 4 light sources, 10 light detectors and 16 optodes (right side). Optodes that are located on the leftmost side of the forehead namely 1, 2, 3 and 4 denotes left prefrontal cortex (PFC), optodes that are centrally located as 7, 8, 9 and 10 denotes central PFC, and optodes that are located on the rightmost side as 13, 14, 15 and 16 denotes right PFC.
Mentions: The raw intensity measurements at 730, and 850 nm were Butterworth low-pass filtered with MATLAB program (MATLAB and Statistics Toolbox, 2007). Butterworth filter was designed to eliminate possible respiration and heart rate signals and unwanted high frequency noise (Huppert et al., 2009). The artifact removal process has been made according to Ayaz et al. (2012). The PFC oxygenation data retrieved via fNIRS were examined in right, left and central PFC areas and defined as region of interest (ROI; Figure 2). Optodes that are located on the leftmost side of the forehead namely 1, 2, 3 and 4 combined to denote left PFC, optodes that are centrally located as 7, 8, 9 and 10 combined to denote central PFC, and optodes that are located on the rightmost side as 13, 14, 15 and 16 combined to denote right PFC. fNIRS signals were calculated and averaged over the whole pre- and post-exercise 2-Back sessions (Endo et al., 2013).

Bottom Line: When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test.HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP.This can become a valuable parameter for future studies on human factor.

View Article: PubMed Central - PubMed

Affiliation: Department of Physiology, Faculty of Medicine, Dokuz Eylul UniversityIzmir, Turkey; Department of Biophysics, Faculty of Medicine, Dokuz Eylul UniversityIzmir, Turkey.

ABSTRACT
Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and total-Hb). The magnitude of this impact might be related with the physical performance capacities of the individuals. This can become a valuable parameter for future studies on human factor.

No MeSH data available.


Related in: MedlinePlus