Limits...
Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload.

Bediz CS, Oniz A, Guducu C, Ural Demirci E, Ogut H, Gunay E, Cetinkaya C, Ozgoren M - Front Hum Neurosci (2016)

Bottom Line: When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test.HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP.This can become a valuable parameter for future studies on human factor.

View Article: PubMed Central - PubMed

Affiliation: Department of Physiology, Faculty of Medicine, Dokuz Eylul UniversityIzmir, Turkey; Department of Biophysics, Faculty of Medicine, Dokuz Eylul UniversityIzmir, Turkey.

ABSTRACT
Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and total-Hb). The magnitude of this impact might be related with the physical performance capacities of the individuals. This can become a valuable parameter for future studies on human factor.

No MeSH data available.


Related in: MedlinePlus

(A) The demonstration of experimental design for the current study. (B) Participant seated at cycle ergometer during whole paradigm.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4837702&req=5

Figure 1: (A) The demonstration of experimental design for the current study. (B) Participant seated at cycle ergometer during whole paradigm.

Mentions: Thirty-five male healthy and physically active subjects (1.78 ± 0.07 cm height and 72.1 ± 10.3 kg weight) aged between 18 and 23 years participated to the study (Table 1). All subjects were informed about the procedures and signed a written consent. Experiments were conducted in two visits. In first visit, the subjects were informed and became familiar to both exercise and N-Back test protocols. Within 3 days, subjects re-visited the laboratory to perform a short term-supramaximal acute exercise and cognitive tasks (2-Back tests) before and after exercise (Figure 1). Brain oxygenation was continuously measured via fNIRS during cognitive tasks and exercise. In order to evaluate the performance dependent results, an average peak power value was calculated for all subjects. Subjects who had higher power values than the average (751 Watt) was considered as high performers (HP), (N = 17 subjects) while who had lower power values than average were considered as low performers (LP), (N = 18 subjects). There were no statistically significant differences in terms of age, weight and height between the HP and LP groups. The Ethics Committee of Dokuz Eylul University approved all procedures and experimental design.


Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload.

Bediz CS, Oniz A, Guducu C, Ural Demirci E, Ogut H, Gunay E, Cetinkaya C, Ozgoren M - Front Hum Neurosci (2016)

(A) The demonstration of experimental design for the current study. (B) Participant seated at cycle ergometer during whole paradigm.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4837702&req=5

Figure 1: (A) The demonstration of experimental design for the current study. (B) Participant seated at cycle ergometer during whole paradigm.
Mentions: Thirty-five male healthy and physically active subjects (1.78 ± 0.07 cm height and 72.1 ± 10.3 kg weight) aged between 18 and 23 years participated to the study (Table 1). All subjects were informed about the procedures and signed a written consent. Experiments were conducted in two visits. In first visit, the subjects were informed and became familiar to both exercise and N-Back test protocols. Within 3 days, subjects re-visited the laboratory to perform a short term-supramaximal acute exercise and cognitive tasks (2-Back tests) before and after exercise (Figure 1). Brain oxygenation was continuously measured via fNIRS during cognitive tasks and exercise. In order to evaluate the performance dependent results, an average peak power value was calculated for all subjects. Subjects who had higher power values than the average (751 Watt) was considered as high performers (HP), (N = 17 subjects) while who had lower power values than average were considered as low performers (LP), (N = 18 subjects). There were no statistically significant differences in terms of age, weight and height between the HP and LP groups. The Ethics Committee of Dokuz Eylul University approved all procedures and experimental design.

Bottom Line: When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test.HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP.This can become a valuable parameter for future studies on human factor.

View Article: PubMed Central - PubMed

Affiliation: Department of Physiology, Faculty of Medicine, Dokuz Eylul UniversityIzmir, Turkey; Department of Biophysics, Faculty of Medicine, Dokuz Eylul UniversityIzmir, Turkey.

ABSTRACT
Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and total-Hb). The magnitude of this impact might be related with the physical performance capacities of the individuals. This can become a valuable parameter for future studies on human factor.

No MeSH data available.


Related in: MedlinePlus