Limits...
The Cajal School in the Peripheral Nervous System: The Transcendent Contributions of Fernando de Castro on the Microscopic Structure of Sensory and Autonomic Motor Ganglia.

de Castro F - Front Neuroanat (2016)

Bottom Line: Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results.In the mid of the 1920's, both young neuroscientists were worldwide recognized as the top experts in the field.Most of these discoveries remain fully alive today.

View Article: PubMed Central - PubMed

Affiliation: Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC Madrid, Spain.

ABSTRACT
The fine structure of the autonomic nervous system was largely unknown at the beginning of the second decade of the 20th century. Although relatively anatomists and histologists had studied the subject, even the assays by the great Russian histologist Alexander Dogiel and the Spanish Nobel Prize laureate, Santiago Ramón y Cajal, were incomplete. In a time which witnessed fundamental discoveries by Langley, Loewi and Dale on the physiology of the autonomic nervous system, both reputed researchers entrusted one of their outstanding disciples to the challenge to further investigate autonomic structures: the Russian B.I. Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results. In the mid of the 1920's, both young neuroscientists were worldwide recognized as the top experts in the field. In the present work we describe the main discoveries by Fernando de Castro in those years regarding the structure of sympathetic and sensory ganglia, the organization of the synaptic contacts in these ganglia, and the nature of their innervation, later materialized in their respective chapters, personally invited by the editor, in Wilder Penfield's famous textbook on Neurology and the Nervous System. Most of these discoveries remain fully alive today.

No MeSH data available.


Related in: MedlinePlus

Post-war de Castro on the autonomic nervous system and their synaptic structure. (A) Electromiographic recordings of the nictitant membrane of the adult cat where the sympathetic superior cervical ganglion has been innervated by rami from the VI-c and VII-c nerves (de Castro and Herreros, 1945). This 10 s-recording shows that the intensity of the contraction correlates with the frequency of the tetanic stimulation. (B) Schematic representation of the preganglionic convergence of fibers (a, b, c) onto ganglionic cell types (A, B, C). The thickness of the fibers is representative of their thickness in vivo. In this it is assumed that ganglion cells can trigger when activated by two boutons simultaneously, or in the slow fibers (c) when a sinchronic impulse via a-b facilitates it (de Castro and Herreros, 1945). (C) Original letter from Rafael Lorente de Nó to Fernando de Castro (dated at the Rockefeller Institute, New York on January 30th, 1947): “Dear Fernando, Wait at the shipboat till the arrival of Valdecasas or Gallego. Gallego will come with you to New York and will bring you to your accomodation, that is worthy and economic. Hugs, Rafael” (translated by the autor of this work from Spanish). (D) Antonio Gallego (1915–1992) and Fernando de Castro on board of the Motomar steamship, in their way back to from New York to Spain (1947) after their respective first scientific experience at the USA. (E) Fernando de Castro (at the microscope), invited speaker to expose the cytoarchitecture of the autonomic nervous system. Became one of the main characters in the final offical defeat of reticularists at the 34 Tagung Deutschen Gesselchaft fü Pathologie (Wiesbaden, Germany; 1950). His friend, the German histologist established in Chile, Emil Herzog (on foot, with glasses, just behind Fernando de Castro) acts as de Castro’s master of ceremony at that time, (A–E) are part of Archive Fernando de Castro.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4837679&req=5

Figure 5: Post-war de Castro on the autonomic nervous system and their synaptic structure. (A) Electromiographic recordings of the nictitant membrane of the adult cat where the sympathetic superior cervical ganglion has been innervated by rami from the VI-c and VII-c nerves (de Castro and Herreros, 1945). This 10 s-recording shows that the intensity of the contraction correlates with the frequency of the tetanic stimulation. (B) Schematic representation of the preganglionic convergence of fibers (a, b, c) onto ganglionic cell types (A, B, C). The thickness of the fibers is representative of their thickness in vivo. In this it is assumed that ganglion cells can trigger when activated by two boutons simultaneously, or in the slow fibers (c) when a sinchronic impulse via a-b facilitates it (de Castro and Herreros, 1945). (C) Original letter from Rafael Lorente de Nó to Fernando de Castro (dated at the Rockefeller Institute, New York on January 30th, 1947): “Dear Fernando, Wait at the shipboat till the arrival of Valdecasas or Gallego. Gallego will come with you to New York and will bring you to your accomodation, that is worthy and economic. Hugs, Rafael” (translated by the autor of this work from Spanish). (D) Antonio Gallego (1915–1992) and Fernando de Castro on board of the Motomar steamship, in their way back to from New York to Spain (1947) after their respective first scientific experience at the USA. (E) Fernando de Castro (at the microscope), invited speaker to expose the cytoarchitecture of the autonomic nervous system. Became one of the main characters in the final offical defeat of reticularists at the 34 Tagung Deutschen Gesselchaft fü Pathologie (Wiesbaden, Germany; 1950). His friend, the German histologist established in Chile, Emil Herzog (on foot, with glasses, just behind Fernando de Castro) acts as de Castro’s master of ceremony at that time, (A–E) are part of Archive Fernando de Castro.

Mentions: Times changed and Fernando de Castro decided to attack one of his scientific dreams, postponed for years due to the Spanish Civil War (1936–1939) and the Second World War (1939–1945). The study of structure and function of synapses had significantly progressed in these years already, and de Castro assumed that the study of synapses in the autonomic nervous system would really be profiting since the structure of the ganglia is simpler than that of the CNS and his particular knowledge on the fine structure of the sympathetic ganglia would undoubtedly be of great help in this new research (Figures 5A,B). As soon as the political circumstances permitted, de Castro contacted his old friend Rafael Lorente de Nó who had emigrated to the USA in 1931 to fulfill a fellowship at the Rockefeller University in New York. Fernando de Castro’s travel request to the USA was accepted and granted by the Junta de Relaciones Culturales (Spain), de Castro arrived in New York at the beginning of 1947, to work with Herbert S. Gasser (Nobel Prize in Medicine or Physiology on 1944, shared with Joseph Erlanger) and Lorente de Nó and to learn the basics of electrophysiology and electrophysiological recordings (Figures 5C,D).


The Cajal School in the Peripheral Nervous System: The Transcendent Contributions of Fernando de Castro on the Microscopic Structure of Sensory and Autonomic Motor Ganglia.

de Castro F - Front Neuroanat (2016)

Post-war de Castro on the autonomic nervous system and their synaptic structure. (A) Electromiographic recordings of the nictitant membrane of the adult cat where the sympathetic superior cervical ganglion has been innervated by rami from the VI-c and VII-c nerves (de Castro and Herreros, 1945). This 10 s-recording shows that the intensity of the contraction correlates with the frequency of the tetanic stimulation. (B) Schematic representation of the preganglionic convergence of fibers (a, b, c) onto ganglionic cell types (A, B, C). The thickness of the fibers is representative of their thickness in vivo. In this it is assumed that ganglion cells can trigger when activated by two boutons simultaneously, or in the slow fibers (c) when a sinchronic impulse via a-b facilitates it (de Castro and Herreros, 1945). (C) Original letter from Rafael Lorente de Nó to Fernando de Castro (dated at the Rockefeller Institute, New York on January 30th, 1947): “Dear Fernando, Wait at the shipboat till the arrival of Valdecasas or Gallego. Gallego will come with you to New York and will bring you to your accomodation, that is worthy and economic. Hugs, Rafael” (translated by the autor of this work from Spanish). (D) Antonio Gallego (1915–1992) and Fernando de Castro on board of the Motomar steamship, in their way back to from New York to Spain (1947) after their respective first scientific experience at the USA. (E) Fernando de Castro (at the microscope), invited speaker to expose the cytoarchitecture of the autonomic nervous system. Became one of the main characters in the final offical defeat of reticularists at the 34 Tagung Deutschen Gesselchaft fü Pathologie (Wiesbaden, Germany; 1950). His friend, the German histologist established in Chile, Emil Herzog (on foot, with glasses, just behind Fernando de Castro) acts as de Castro’s master of ceremony at that time, (A–E) are part of Archive Fernando de Castro.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4837679&req=5

Figure 5: Post-war de Castro on the autonomic nervous system and their synaptic structure. (A) Electromiographic recordings of the nictitant membrane of the adult cat where the sympathetic superior cervical ganglion has been innervated by rami from the VI-c and VII-c nerves (de Castro and Herreros, 1945). This 10 s-recording shows that the intensity of the contraction correlates with the frequency of the tetanic stimulation. (B) Schematic representation of the preganglionic convergence of fibers (a, b, c) onto ganglionic cell types (A, B, C). The thickness of the fibers is representative of their thickness in vivo. In this it is assumed that ganglion cells can trigger when activated by two boutons simultaneously, or in the slow fibers (c) when a sinchronic impulse via a-b facilitates it (de Castro and Herreros, 1945). (C) Original letter from Rafael Lorente de Nó to Fernando de Castro (dated at the Rockefeller Institute, New York on January 30th, 1947): “Dear Fernando, Wait at the shipboat till the arrival of Valdecasas or Gallego. Gallego will come with you to New York and will bring you to your accomodation, that is worthy and economic. Hugs, Rafael” (translated by the autor of this work from Spanish). (D) Antonio Gallego (1915–1992) and Fernando de Castro on board of the Motomar steamship, in their way back to from New York to Spain (1947) after their respective first scientific experience at the USA. (E) Fernando de Castro (at the microscope), invited speaker to expose the cytoarchitecture of the autonomic nervous system. Became one of the main characters in the final offical defeat of reticularists at the 34 Tagung Deutschen Gesselchaft fü Pathologie (Wiesbaden, Germany; 1950). His friend, the German histologist established in Chile, Emil Herzog (on foot, with glasses, just behind Fernando de Castro) acts as de Castro’s master of ceremony at that time, (A–E) are part of Archive Fernando de Castro.
Mentions: Times changed and Fernando de Castro decided to attack one of his scientific dreams, postponed for years due to the Spanish Civil War (1936–1939) and the Second World War (1939–1945). The study of structure and function of synapses had significantly progressed in these years already, and de Castro assumed that the study of synapses in the autonomic nervous system would really be profiting since the structure of the ganglia is simpler than that of the CNS and his particular knowledge on the fine structure of the sympathetic ganglia would undoubtedly be of great help in this new research (Figures 5A,B). As soon as the political circumstances permitted, de Castro contacted his old friend Rafael Lorente de Nó who had emigrated to the USA in 1931 to fulfill a fellowship at the Rockefeller University in New York. Fernando de Castro’s travel request to the USA was accepted and granted by the Junta de Relaciones Culturales (Spain), de Castro arrived in New York at the beginning of 1947, to work with Herbert S. Gasser (Nobel Prize in Medicine or Physiology on 1944, shared with Joseph Erlanger) and Lorente de Nó and to learn the basics of electrophysiology and electrophysiological recordings (Figures 5C,D).

Bottom Line: Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results.In the mid of the 1920's, both young neuroscientists were worldwide recognized as the top experts in the field.Most of these discoveries remain fully alive today.

View Article: PubMed Central - PubMed

Affiliation: Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC Madrid, Spain.

ABSTRACT
The fine structure of the autonomic nervous system was largely unknown at the beginning of the second decade of the 20th century. Although relatively anatomists and histologists had studied the subject, even the assays by the great Russian histologist Alexander Dogiel and the Spanish Nobel Prize laureate, Santiago Ramón y Cajal, were incomplete. In a time which witnessed fundamental discoveries by Langley, Loewi and Dale on the physiology of the autonomic nervous system, both reputed researchers entrusted one of their outstanding disciples to the challenge to further investigate autonomic structures: the Russian B.I. Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results. In the mid of the 1920's, both young neuroscientists were worldwide recognized as the top experts in the field. In the present work we describe the main discoveries by Fernando de Castro in those years regarding the structure of sympathetic and sensory ganglia, the organization of the synaptic contacts in these ganglia, and the nature of their innervation, later materialized in their respective chapters, personally invited by the editor, in Wilder Penfield's famous textbook on Neurology and the Nervous System. Most of these discoveries remain fully alive today.

No MeSH data available.


Related in: MedlinePlus