Limits...
The Cajal School in the Peripheral Nervous System: The Transcendent Contributions of Fernando de Castro on the Microscopic Structure of Sensory and Autonomic Motor Ganglia.

de Castro F - Front Neuroanat (2016)

Bottom Line: Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results.In the mid of the 1920's, both young neuroscientists were worldwide recognized as the top experts in the field.Most of these discoveries remain fully alive today.

View Article: PubMed Central - PubMed

Affiliation: Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC Madrid, Spain.

ABSTRACT
The fine structure of the autonomic nervous system was largely unknown at the beginning of the second decade of the 20th century. Although relatively anatomists and histologists had studied the subject, even the assays by the great Russian histologist Alexander Dogiel and the Spanish Nobel Prize laureate, Santiago Ramón y Cajal, were incomplete. In a time which witnessed fundamental discoveries by Langley, Loewi and Dale on the physiology of the autonomic nervous system, both reputed researchers entrusted one of their outstanding disciples to the challenge to further investigate autonomic structures: the Russian B.I. Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results. In the mid of the 1920's, both young neuroscientists were worldwide recognized as the top experts in the field. In the present work we describe the main discoveries by Fernando de Castro in those years regarding the structure of sympathetic and sensory ganglia, the organization of the synaptic contacts in these ganglia, and the nature of their innervation, later materialized in their respective chapters, personally invited by the editor, in Wilder Penfield's famous textbook on Neurology and the Nervous System. Most of these discoveries remain fully alive today.

No MeSH data available.


Related in: MedlinePlus

First works of Fernando de Castro in the structure of the peripheral nervous system. (A) Image from the original PhD thesis of Fernando de Castro, with his hand-drawn illustrating some pathological forms of neurons from the Gasser’s ganglion from a patient of osteomalacia. The typewritten figure legend (in Spanish) for the defense of the thesis is conserved for the reader, as well as the signature from de Castro at that time. This figure was published in de Castro (1922). (B) de Castro’s original hand-sketch of a portion of a sympathetic lumbar ganglion in normal condition (human, 38-year old) originally stained with the Cajal’s method, and illustrating preganglionic (a) and intraganglionnic endings (d) over dendritic bushes, accesory dendrites forming bushes (b,g), a protoplasmic process forming collaterals (c) and a pericellular dendritic nest (f). This schema was published in de Castro (1923c, 1933). (C) Image of a young Fernando de Castro (1922) at his family house in Cercedilla, in the mountains close to Madrid (A–C) are part of Archive Fernando de Castro.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4837679&req=5

Figure 2: First works of Fernando de Castro in the structure of the peripheral nervous system. (A) Image from the original PhD thesis of Fernando de Castro, with his hand-drawn illustrating some pathological forms of neurons from the Gasser’s ganglion from a patient of osteomalacia. The typewritten figure legend (in Spanish) for the defense of the thesis is conserved for the reader, as well as the signature from de Castro at that time. This figure was published in de Castro (1922). (B) de Castro’s original hand-sketch of a portion of a sympathetic lumbar ganglion in normal condition (human, 38-year old) originally stained with the Cajal’s method, and illustrating preganglionic (a) and intraganglionnic endings (d) over dendritic bushes, accesory dendrites forming bushes (b,g), a protoplasmic process forming collaterals (c) and a pericellular dendritic nest (f). This schema was published in de Castro (1923c, 1933). (C) Image of a young Fernando de Castro (1922) at his family house in Cercedilla, in the mountains close to Madrid (A–C) are part of Archive Fernando de Castro.

Mentions: In his research on experimental re-innervation and regeneration, de Castro produced several of his most memorable histological preparations and drawings reflecting the diversity of cells and the complex relationships between neurons (Figure 2; de Castro, 1921, 1922). The publication of these intense and meticulous studies had important consequences. Some of them are easily tangible. For instance, de Castro’s PhD thesis, named “Estudio de los ganglios sensitivos del hombre en estado normal y patológico. Formas celulares típicas y atípicas” defended at the Medical School of the Universidad de Madrid (Spain) in 1922 (Figure 2A), obtained the highest possible qualification (“Sobresaliente”) and was 1 year later awarded by the Real Academia Nacional de Medicina with the Rodríguez Abaytúa Prize. But the ultimate award for de Castro’s scientific career was the definitive and full scientific and technical recognition by the Maestro, Santiago Ramón y Cajal. This recognition did not weaken: it would last until the death of Cajal in 1934 and would determine several of the milestones in the scientific trajectory and human life of Fernando de Castro.


The Cajal School in the Peripheral Nervous System: The Transcendent Contributions of Fernando de Castro on the Microscopic Structure of Sensory and Autonomic Motor Ganglia.

de Castro F - Front Neuroanat (2016)

First works of Fernando de Castro in the structure of the peripheral nervous system. (A) Image from the original PhD thesis of Fernando de Castro, with his hand-drawn illustrating some pathological forms of neurons from the Gasser’s ganglion from a patient of osteomalacia. The typewritten figure legend (in Spanish) for the defense of the thesis is conserved for the reader, as well as the signature from de Castro at that time. This figure was published in de Castro (1922). (B) de Castro’s original hand-sketch of a portion of a sympathetic lumbar ganglion in normal condition (human, 38-year old) originally stained with the Cajal’s method, and illustrating preganglionic (a) and intraganglionnic endings (d) over dendritic bushes, accesory dendrites forming bushes (b,g), a protoplasmic process forming collaterals (c) and a pericellular dendritic nest (f). This schema was published in de Castro (1923c, 1933). (C) Image of a young Fernando de Castro (1922) at his family house in Cercedilla, in the mountains close to Madrid (A–C) are part of Archive Fernando de Castro.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4837679&req=5

Figure 2: First works of Fernando de Castro in the structure of the peripheral nervous system. (A) Image from the original PhD thesis of Fernando de Castro, with his hand-drawn illustrating some pathological forms of neurons from the Gasser’s ganglion from a patient of osteomalacia. The typewritten figure legend (in Spanish) for the defense of the thesis is conserved for the reader, as well as the signature from de Castro at that time. This figure was published in de Castro (1922). (B) de Castro’s original hand-sketch of a portion of a sympathetic lumbar ganglion in normal condition (human, 38-year old) originally stained with the Cajal’s method, and illustrating preganglionic (a) and intraganglionnic endings (d) over dendritic bushes, accesory dendrites forming bushes (b,g), a protoplasmic process forming collaterals (c) and a pericellular dendritic nest (f). This schema was published in de Castro (1923c, 1933). (C) Image of a young Fernando de Castro (1922) at his family house in Cercedilla, in the mountains close to Madrid (A–C) are part of Archive Fernando de Castro.
Mentions: In his research on experimental re-innervation and regeneration, de Castro produced several of his most memorable histological preparations and drawings reflecting the diversity of cells and the complex relationships between neurons (Figure 2; de Castro, 1921, 1922). The publication of these intense and meticulous studies had important consequences. Some of them are easily tangible. For instance, de Castro’s PhD thesis, named “Estudio de los ganglios sensitivos del hombre en estado normal y patológico. Formas celulares típicas y atípicas” defended at the Medical School of the Universidad de Madrid (Spain) in 1922 (Figure 2A), obtained the highest possible qualification (“Sobresaliente”) and was 1 year later awarded by the Real Academia Nacional de Medicina with the Rodríguez Abaytúa Prize. But the ultimate award for de Castro’s scientific career was the definitive and full scientific and technical recognition by the Maestro, Santiago Ramón y Cajal. This recognition did not weaken: it would last until the death of Cajal in 1934 and would determine several of the milestones in the scientific trajectory and human life of Fernando de Castro.

Bottom Line: Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results.In the mid of the 1920's, both young neuroscientists were worldwide recognized as the top experts in the field.Most of these discoveries remain fully alive today.

View Article: PubMed Central - PubMed

Affiliation: Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC Madrid, Spain.

ABSTRACT
The fine structure of the autonomic nervous system was largely unknown at the beginning of the second decade of the 20th century. Although relatively anatomists and histologists had studied the subject, even the assays by the great Russian histologist Alexander Dogiel and the Spanish Nobel Prize laureate, Santiago Ramón y Cajal, were incomplete. In a time which witnessed fundamental discoveries by Langley, Loewi and Dale on the physiology of the autonomic nervous system, both reputed researchers entrusted one of their outstanding disciples to the challenge to further investigate autonomic structures: the Russian B.I. Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results. In the mid of the 1920's, both young neuroscientists were worldwide recognized as the top experts in the field. In the present work we describe the main discoveries by Fernando de Castro in those years regarding the structure of sympathetic and sensory ganglia, the organization of the synaptic contacts in these ganglia, and the nature of their innervation, later materialized in their respective chapters, personally invited by the editor, in Wilder Penfield's famous textbook on Neurology and the Nervous System. Most of these discoveries remain fully alive today.

No MeSH data available.


Related in: MedlinePlus