Limits...
Lung complications are common in intensive care treated patients with pelvis fractures: a retrospective cohort study.

Engström J, Reinius H, Ström J, Bergström MF, Larsson IM, Larsson A, Borg T - Scand J Trauma Resusc Emerg Med (2016)

Bottom Line: Overall, there were no significant changes in oxygenation variables associated with surgery.However, 23 patients with pre-operative normal lung status developed AHF/ARDS in relation to the surgical procedure, whereas 12 patients with AHF/ARDS normalized their lung condition.Study was registered at ISRCTN.org number, ISRCTN10335587 .

View Article: PubMed Central - PubMed

Affiliation: Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, SE-751 85, Uppsala, Sweden. joakim.engstrom@surgsci.uu.se.

ABSTRACT

Background: The incidence of severe respiratory complications in patients with pelvis fractures needing intensive care have not previously been studied. Therefore, the aims of this registry study were to 1) determine the number of ICU patients with pelvis fractures who had severe respiratory complications 2) whether the surgical intervention in these patients is associated with the pulmonary condition and 3) whether there is an association between lung complications and mortality. We hypothesized that acute hypoxic failure (AHF) and acute respiratory distress syndrome (ARDS) 1) are common in ICU treated patients with pelvis fractures, 2) are not related to the reconstructive surgery, or to 3) to mortality.

Methods: All patients in the database cohort (n = 112), scheduled for surgical stabilization of pelvis ring and/or acetabulum fractures, admitted to the general ICU at Uppsala University Hospital between 2007 and 2014 for intensive care were included.

Results: The incidence of AHF/ARDS was 67 % (75/112 patients), i.e., the percentage of patients that at any period during the ICU stay fulfilled the AHF/ARDS criteria. The incidence of AHF was 44 % and incidence of ARDS was 23 %. The patients with AHF/ARDS had more lung contusions and pneumonia than the patients without AHF/ARDS. Overall, there were no significant changes in oxygenation variables associated with surgery. However, 23 patients with pre-operative normal lung status developed AHF/ARDS in relation to the surgical procedure, whereas 12 patients with AHF/ARDS normalized their lung condition. The patients who developed AHF/ARDS had a higher incidence of lung contusion (P = 0.04) and the surgical stabilization was performed earlier (5 versus 10 days) in these patients (P = 0.03).

Conclusions: We found that the incidence of respiratory failure in ICU treated patients with pelvis fractures was high, that the procedure around surgical stabilization seems to be associated with a worsening in the respiratory function in patients with lung contusion, and that mortality was low and was probably not related to the respiratory condition.

Trial registration: Study was registered at ISRCTN.org number, ISRCTN10335587 .

No MeSH data available.


Related in: MedlinePlus

Patient with acute hypoxic failure (AHF) and acute respiratory distress syndrome (ARDS) and the individual status change pre- and post-operative. The 37 patients who did not have AHF/ARDS at any time during the ICU stay are not included in the figure. The Y-axis shows the number of patients, the x-axis the oxygenation status of the individual patients before surgery and the z-axis the oxygenation status after surgery. For example, 5 patients had no AHF/ARDS before but deveoped mild AHF/ARDS after surgery and 15 patients had no AHF/ARDS before but developed moderate AHF/ARDS after surgery. The color describes how the individual patient’s AHF/ARDS status changed post-operatively. Red = Worsen AHF/ARDS status (e.g. 15 patients had no AHF/ARDS pre-operative but had moderate AHF/ARD post-operative (the red number 15)). Blue = No AHF/ARDS status change (e.g. 11 patients had moderate AHF/ARDS pre-operative and post-operative (the blue number 11)). Green = Better AHF/ARDS status (e.g. 2 patients had severe AHF/ARDS pre-operative but had moderate AHF/ARDS post-operative (the green number 2))
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4837640&req=5

Fig4: Patient with acute hypoxic failure (AHF) and acute respiratory distress syndrome (ARDS) and the individual status change pre- and post-operative. The 37 patients who did not have AHF/ARDS at any time during the ICU stay are not included in the figure. The Y-axis shows the number of patients, the x-axis the oxygenation status of the individual patients before surgery and the z-axis the oxygenation status after surgery. For example, 5 patients had no AHF/ARDS before but deveoped mild AHF/ARDS after surgery and 15 patients had no AHF/ARDS before but developed moderate AHF/ARDS after surgery. The color describes how the individual patient’s AHF/ARDS status changed post-operatively. Red = Worsen AHF/ARDS status (e.g. 15 patients had no AHF/ARDS pre-operative but had moderate AHF/ARD post-operative (the red number 15)). Blue = No AHF/ARDS status change (e.g. 11 patients had moderate AHF/ARDS pre-operative and post-operative (the blue number 11)). Green = Better AHF/ARDS status (e.g. 2 patients had severe AHF/ARDS pre-operative but had moderate AHF/ARDS post-operative (the green number 2))

Mentions: There were no significant differences in PaO2/FiO2 ratio from before to after surgery (28 ± 15 kPa vs 27 ± 12 kPa). However, 23 patients with pre-operative normal lung status developed AHF/ARDS in relation to the surgical procedure, whereas 12 patients with AHF/ARDS normalized their lung condition (Fig. 4). The injury scores and the amount of fluid administrated and blood product transfused were similar in the two categories. However, the patients who developed AHF/ARDS had a higher incidence of lung contusion (P = 0.04). In addition, surgical stabilization was performed earlier (5 versus 10 days) in these patients (P = 0.03).Fig. 4


Lung complications are common in intensive care treated patients with pelvis fractures: a retrospective cohort study.

Engström J, Reinius H, Ström J, Bergström MF, Larsson IM, Larsson A, Borg T - Scand J Trauma Resusc Emerg Med (2016)

Patient with acute hypoxic failure (AHF) and acute respiratory distress syndrome (ARDS) and the individual status change pre- and post-operative. The 37 patients who did not have AHF/ARDS at any time during the ICU stay are not included in the figure. The Y-axis shows the number of patients, the x-axis the oxygenation status of the individual patients before surgery and the z-axis the oxygenation status after surgery. For example, 5 patients had no AHF/ARDS before but deveoped mild AHF/ARDS after surgery and 15 patients had no AHF/ARDS before but developed moderate AHF/ARDS after surgery. The color describes how the individual patient’s AHF/ARDS status changed post-operatively. Red = Worsen AHF/ARDS status (e.g. 15 patients had no AHF/ARDS pre-operative but had moderate AHF/ARD post-operative (the red number 15)). Blue = No AHF/ARDS status change (e.g. 11 patients had moderate AHF/ARDS pre-operative and post-operative (the blue number 11)). Green = Better AHF/ARDS status (e.g. 2 patients had severe AHF/ARDS pre-operative but had moderate AHF/ARDS post-operative (the green number 2))
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4837640&req=5

Fig4: Patient with acute hypoxic failure (AHF) and acute respiratory distress syndrome (ARDS) and the individual status change pre- and post-operative. The 37 patients who did not have AHF/ARDS at any time during the ICU stay are not included in the figure. The Y-axis shows the number of patients, the x-axis the oxygenation status of the individual patients before surgery and the z-axis the oxygenation status after surgery. For example, 5 patients had no AHF/ARDS before but deveoped mild AHF/ARDS after surgery and 15 patients had no AHF/ARDS before but developed moderate AHF/ARDS after surgery. The color describes how the individual patient’s AHF/ARDS status changed post-operatively. Red = Worsen AHF/ARDS status (e.g. 15 patients had no AHF/ARDS pre-operative but had moderate AHF/ARD post-operative (the red number 15)). Blue = No AHF/ARDS status change (e.g. 11 patients had moderate AHF/ARDS pre-operative and post-operative (the blue number 11)). Green = Better AHF/ARDS status (e.g. 2 patients had severe AHF/ARDS pre-operative but had moderate AHF/ARDS post-operative (the green number 2))
Mentions: There were no significant differences in PaO2/FiO2 ratio from before to after surgery (28 ± 15 kPa vs 27 ± 12 kPa). However, 23 patients with pre-operative normal lung status developed AHF/ARDS in relation to the surgical procedure, whereas 12 patients with AHF/ARDS normalized their lung condition (Fig. 4). The injury scores and the amount of fluid administrated and blood product transfused were similar in the two categories. However, the patients who developed AHF/ARDS had a higher incidence of lung contusion (P = 0.04). In addition, surgical stabilization was performed earlier (5 versus 10 days) in these patients (P = 0.03).Fig. 4

Bottom Line: Overall, there were no significant changes in oxygenation variables associated with surgery.However, 23 patients with pre-operative normal lung status developed AHF/ARDS in relation to the surgical procedure, whereas 12 patients with AHF/ARDS normalized their lung condition.Study was registered at ISRCTN.org number, ISRCTN10335587 .

View Article: PubMed Central - PubMed

Affiliation: Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, SE-751 85, Uppsala, Sweden. joakim.engstrom@surgsci.uu.se.

ABSTRACT

Background: The incidence of severe respiratory complications in patients with pelvis fractures needing intensive care have not previously been studied. Therefore, the aims of this registry study were to 1) determine the number of ICU patients with pelvis fractures who had severe respiratory complications 2) whether the surgical intervention in these patients is associated with the pulmonary condition and 3) whether there is an association between lung complications and mortality. We hypothesized that acute hypoxic failure (AHF) and acute respiratory distress syndrome (ARDS) 1) are common in ICU treated patients with pelvis fractures, 2) are not related to the reconstructive surgery, or to 3) to mortality.

Methods: All patients in the database cohort (n = 112), scheduled for surgical stabilization of pelvis ring and/or acetabulum fractures, admitted to the general ICU at Uppsala University Hospital between 2007 and 2014 for intensive care were included.

Results: The incidence of AHF/ARDS was 67 % (75/112 patients), i.e., the percentage of patients that at any period during the ICU stay fulfilled the AHF/ARDS criteria. The incidence of AHF was 44 % and incidence of ARDS was 23 %. The patients with AHF/ARDS had more lung contusions and pneumonia than the patients without AHF/ARDS. Overall, there were no significant changes in oxygenation variables associated with surgery. However, 23 patients with pre-operative normal lung status developed AHF/ARDS in relation to the surgical procedure, whereas 12 patients with AHF/ARDS normalized their lung condition. The patients who developed AHF/ARDS had a higher incidence of lung contusion (P = 0.04) and the surgical stabilization was performed earlier (5 versus 10 days) in these patients (P = 0.03).

Conclusions: We found that the incidence of respiratory failure in ICU treated patients with pelvis fractures was high, that the procedure around surgical stabilization seems to be associated with a worsening in the respiratory function in patients with lung contusion, and that mortality was low and was probably not related to the respiratory condition.

Trial registration: Study was registered at ISRCTN.org number, ISRCTN10335587 .

No MeSH data available.


Related in: MedlinePlus