Limits...
Genetic parameters of white striping in relation to body weight, carcass composition, and meat quality traits in two broiler lines divergently selected for the ultimate pH of the pectoralis major muscle.

Alnahhas N, Berri C, Chabault M, Chartrin P, Boulay M, Bourin MC, Le Bihan-Duval E - BMC Genet. (2016)

Bottom Line: Increased body weight and breast muscle yield were significantly associated with increased incidence and severity of WS regardless of the line.The positive genetic association reported in this study between WS and muscle pHu indicated a possible relationship between the ability of muscle to store energy as a carbohydrate and its likelihood of developing WS.Finally, the strong genetic determinism of WS suggested that selection can be an efficient means of reducing the incidence of WS and of limiting its undesirable consequences on meat quality in broiler chickens.

View Article: PubMed Central - PubMed

Affiliation: URA,INRA, 37380, Nouzilly, France.

ABSTRACT

Background: White striping (WS) is an emerging quality defect with adverse consequences for the sensorial, technological, and nutritional qualities of breast meat in broiler chickens. The genetic determinism of this defect is little understood and thus the aim of the study presented here was to estimate the genetic parameters of WS in relation to other traits of economic importance such as body weight, carcass composition, and technological meat quality in an experimental population consisting of two divergent lines selected for high (pHu + line) or low (pHu- line) ultimate pH (pHu) of the pectoralis major (p. major) muscle.

Results: The incidence of WS in the whole population was 50.7%, with 36.7% of broilers being moderately and 14% being severely affected. A higher incidence of moderate (p < 0.001) and severe (p < 0.0001) WS was observed in the pHu + line, and strong genetic determinism (h(2) = 0.65 ± 0.08) was evidenced for WS in the studied lines. In addition, WS was significantly genetically correlated with body weight (rg = 0.33 ± 0.15), and breast meat yield (0.68 ± 0.06), but not with the percentage of leg or abdominal fat. Increased body weight and breast muscle yield were significantly associated with increased incidence and severity of WS regardless of the line. Significant rg were observed between WS and several meat quality traits, including breast (0.21 ± 0.08) and thigh (0.31 ± 0.10) pHu, and breast cooking loss (0.30 ± 0.15). WS was also strongly genetically correlated with the intramuscular fat content of the pectoralis major muscle (0.64 ± 0.09), but not with the lipid oxidation index of this muscle.

Conclusions: This study highlighted the role of genetics as a major determinant of WS. The estimated genetic correlations showed that WS was more highly related to muscle development than to the overall growth of the body. The positive genetic association reported in this study between WS and muscle pHu indicated a possible relationship between the ability of muscle to store energy as a carbohydrate and its likelihood of developing WS. Finally, the strong genetic determinism of WS suggested that selection can be an efficient means of reducing the incidence of WS and of limiting its undesirable consequences on meat quality in broiler chickens.

No MeSH data available.


Related in: MedlinePlus

Incidence of white striping (WS) per line and sex. pHu + = broiler line selected for high value of ultimate pH; pHu- = broiler line selected for low value of ultimate pH. NORM = normal breast fillets; MOD = breast fillets moderately affected by white striping; SEV = breast fillets severely affected by white striping. Observed frequencies per line and sex have been compared within each category of WS. a-cdifferent letters indicate significant difference (p < 0.05) within each WS category
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4837622&req=5

Fig1: Incidence of white striping (WS) per line and sex. pHu + = broiler line selected for high value of ultimate pH; pHu- = broiler line selected for low value of ultimate pH. NORM = normal breast fillets; MOD = breast fillets moderately affected by white striping; SEV = breast fillets severely affected by white striping. Observed frequencies per line and sex have been compared within each category of WS. a-cdifferent letters indicate significant difference (p < 0.05) within each WS category

Mentions: The incidence of white striping was determined by line and sex (Fig. 1). When totaling lines and sexes (n = 1349), 36.7 % of the fillets were categorized as moderately affected (MOD) and 14 % as severely affected (SEV), making a total of 50.7 %, which is in line with previously reported findings obtained in experimental conditions [4]. Frequencies of normal breast fillets were higher in the pHu- than in the pHu + line regardless of the sex, the difference being more pronounced in females than in males. Within the pHu- line, the proportion of normal fillets was higher in females than in males. Females of the pHu + line presented higher frequency of moderately white striped breast fillets compared to females of the pHu- line, while males of the two lines showed similar incidences. Finally, the incidence of severe white striping was higher in the pHu + than in the pHu- line for both sexes. The higher incidence of moderate (p < 0.001) and severe (p < 0.0001) WS observed in the pHu + line is in line with previous results that showed that white striped breast fillets were characterized by higher pHu than normal breast fillets [5, 10]. The positive association reported between breast muscle pHu and the increased degree of WS may be due to the fact that birds with the highest degree of WS also exhibited the highest breast muscle yield (BMY) [10]. This latter trait has already been shown to be negatively related to muscle glycogen reserve and positively related to pHu in broilers [11]. In a previous work [9], we have shown that despite a similar growth rate, the pHu + line exhibited higher BMY compared to the pHu- line, which could partly account for the higher incidence of WS in the pHu + line.Fig. 1


Genetic parameters of white striping in relation to body weight, carcass composition, and meat quality traits in two broiler lines divergently selected for the ultimate pH of the pectoralis major muscle.

Alnahhas N, Berri C, Chabault M, Chartrin P, Boulay M, Bourin MC, Le Bihan-Duval E - BMC Genet. (2016)

Incidence of white striping (WS) per line and sex. pHu + = broiler line selected for high value of ultimate pH; pHu- = broiler line selected for low value of ultimate pH. NORM = normal breast fillets; MOD = breast fillets moderately affected by white striping; SEV = breast fillets severely affected by white striping. Observed frequencies per line and sex have been compared within each category of WS. a-cdifferent letters indicate significant difference (p < 0.05) within each WS category
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4837622&req=5

Fig1: Incidence of white striping (WS) per line and sex. pHu + = broiler line selected for high value of ultimate pH; pHu- = broiler line selected for low value of ultimate pH. NORM = normal breast fillets; MOD = breast fillets moderately affected by white striping; SEV = breast fillets severely affected by white striping. Observed frequencies per line and sex have been compared within each category of WS. a-cdifferent letters indicate significant difference (p < 0.05) within each WS category
Mentions: The incidence of white striping was determined by line and sex (Fig. 1). When totaling lines and sexes (n = 1349), 36.7 % of the fillets were categorized as moderately affected (MOD) and 14 % as severely affected (SEV), making a total of 50.7 %, which is in line with previously reported findings obtained in experimental conditions [4]. Frequencies of normal breast fillets were higher in the pHu- than in the pHu + line regardless of the sex, the difference being more pronounced in females than in males. Within the pHu- line, the proportion of normal fillets was higher in females than in males. Females of the pHu + line presented higher frequency of moderately white striped breast fillets compared to females of the pHu- line, while males of the two lines showed similar incidences. Finally, the incidence of severe white striping was higher in the pHu + than in the pHu- line for both sexes. The higher incidence of moderate (p < 0.001) and severe (p < 0.0001) WS observed in the pHu + line is in line with previous results that showed that white striped breast fillets were characterized by higher pHu than normal breast fillets [5, 10]. The positive association reported between breast muscle pHu and the increased degree of WS may be due to the fact that birds with the highest degree of WS also exhibited the highest breast muscle yield (BMY) [10]. This latter trait has already been shown to be negatively related to muscle glycogen reserve and positively related to pHu in broilers [11]. In a previous work [9], we have shown that despite a similar growth rate, the pHu + line exhibited higher BMY compared to the pHu- line, which could partly account for the higher incidence of WS in the pHu + line.Fig. 1

Bottom Line: Increased body weight and breast muscle yield were significantly associated with increased incidence and severity of WS regardless of the line.The positive genetic association reported in this study between WS and muscle pHu indicated a possible relationship between the ability of muscle to store energy as a carbohydrate and its likelihood of developing WS.Finally, the strong genetic determinism of WS suggested that selection can be an efficient means of reducing the incidence of WS and of limiting its undesirable consequences on meat quality in broiler chickens.

View Article: PubMed Central - PubMed

Affiliation: URA,INRA, 37380, Nouzilly, France.

ABSTRACT

Background: White striping (WS) is an emerging quality defect with adverse consequences for the sensorial, technological, and nutritional qualities of breast meat in broiler chickens. The genetic determinism of this defect is little understood and thus the aim of the study presented here was to estimate the genetic parameters of WS in relation to other traits of economic importance such as body weight, carcass composition, and technological meat quality in an experimental population consisting of two divergent lines selected for high (pHu + line) or low (pHu- line) ultimate pH (pHu) of the pectoralis major (p. major) muscle.

Results: The incidence of WS in the whole population was 50.7%, with 36.7% of broilers being moderately and 14% being severely affected. A higher incidence of moderate (p < 0.001) and severe (p < 0.0001) WS was observed in the pHu + line, and strong genetic determinism (h(2) = 0.65 ± 0.08) was evidenced for WS in the studied lines. In addition, WS was significantly genetically correlated with body weight (rg = 0.33 ± 0.15), and breast meat yield (0.68 ± 0.06), but not with the percentage of leg or abdominal fat. Increased body weight and breast muscle yield were significantly associated with increased incidence and severity of WS regardless of the line. Significant rg were observed between WS and several meat quality traits, including breast (0.21 ± 0.08) and thigh (0.31 ± 0.10) pHu, and breast cooking loss (0.30 ± 0.15). WS was also strongly genetically correlated with the intramuscular fat content of the pectoralis major muscle (0.64 ± 0.09), but not with the lipid oxidation index of this muscle.

Conclusions: This study highlighted the role of genetics as a major determinant of WS. The estimated genetic correlations showed that WS was more highly related to muscle development than to the overall growth of the body. The positive genetic association reported in this study between WS and muscle pHu indicated a possible relationship between the ability of muscle to store energy as a carbohydrate and its likelihood of developing WS. Finally, the strong genetic determinism of WS suggested that selection can be an efficient means of reducing the incidence of WS and of limiting its undesirable consequences on meat quality in broiler chickens.

No MeSH data available.


Related in: MedlinePlus