Limits...
Monochromatic X-Ray Induced Novel Synthesis of Plasmonic Nanostructure for Photovoltaic Application.

Bharti A, Bhardwaj R, Agrawal AK, Goyal N, Gautam S - Sci Rep (2016)

Bottom Line: It has been universally delineated that the plasmonic metal nanoparticles can enhance the efficiency of photovoltaic cell by increasing the probability of energetic solar photons capturing phenomena using localized surface plasmonic resonance response.X-ray radiolysis based synthesis provides the control over the reaction and prevent the formation of secondary products as occurs in case of chemical reduction route.In the previous studies, synchrotron "white" X-rays had been examined for the synthesis of metal nanoparticles, but that technique limits only upto the material synthesis while in this work we explored the role of "monochromatic" X-rays for the production of bulk amount of nanoparticles which would also provide the feasibility of in-situ characterization.

View Article: PubMed Central - PubMed

Affiliation: Department of Physics, Panjab University, Chandigarh-160014, INDIA.

ABSTRACT
It has been universally delineated that the plasmonic metal nanoparticles can enhance the efficiency of photovoltaic cell by increasing the probability of energetic solar photons capturing phenomena using localized surface plasmonic resonance response. In this paper, we developed a novel in-situ simple approach to synthesize noble plasmonic silver nanoparticles (AgNP) from aqueous poly-vinyl-pyrrolidone solution of metal salt using radiolysis of water via synchrotron monochromatic X-ray irradiation without any chemical reducing agent. X-ray irradiation of water produces hydrated electrons (e(-)aq), superoxide (O(-)2) and atom radicals H*, which triggers the reaction and reduces metal salt. X-ray radiolysis based synthesis provides the control over the reaction and prevent the formation of secondary products as occurs in case of chemical reduction route. In the previous studies, synchrotron "white" X-rays had been examined for the synthesis of metal nanoparticles, but that technique limits only upto the material synthesis while in this work we explored the role of "monochromatic" X-rays for the production of bulk amount of nanoparticles which would also provide the feasibility of in-situ characterization. Transmission electron micrographs show that the synthesized AgNP appears spherical with diameter of 2-6 nm and is in agreement with the size estimation from uv-vis spectra by "Mie theory".

No MeSH data available.


Related in: MedlinePlus

UV–Visible spectra of sample without (d1), and with scavenger (A5).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4837342&req=5

f3: UV–Visible spectra of sample without (d1), and with scavenger (A5).

Mentions: As the zero valent Ag-atoms are formed, particle growth begins to build nanostructure via nucleation process. might cause the oxidation of to , but the probability of oxidation is rare in comparison to reduction because of the large amount of , and reducing agents than . The two major events has been illustrated which are responsible for the formation of small and bigger particles as shown in Fig. 2. Number of coalesce to form the nanostructure , which further interacts with the atom and synthesize the AgNP. If interact with nanostructure, it results in the growth of AgNP with larger size. The colour phase transition from transparent white to yellow during the X-rays irradiation is attributed to the LSPR27 of AgNP and is the first confirmation towards the formation of nanoparticles. After the irradiation, product solution with appropriate dilution was characterized by the UV-Visible photo-spectrometer (JASCO V-630, USA). The UV-visible spectra of product sample after irradiation of aqueous solution of AgNO3 + PVP (d1) and AgNO3 + PVP + isopropanol (A5) along-with the fitted curve is shown in the Fig. 3. The absorption band (422 and 406 nm) of both the samples lies in the characteristic range27 (380–430 nm) of AgNP and confirmed the formation of same.


Monochromatic X-Ray Induced Novel Synthesis of Plasmonic Nanostructure for Photovoltaic Application.

Bharti A, Bhardwaj R, Agrawal AK, Goyal N, Gautam S - Sci Rep (2016)

UV–Visible spectra of sample without (d1), and with scavenger (A5).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4837342&req=5

f3: UV–Visible spectra of sample without (d1), and with scavenger (A5).
Mentions: As the zero valent Ag-atoms are formed, particle growth begins to build nanostructure via nucleation process. might cause the oxidation of to , but the probability of oxidation is rare in comparison to reduction because of the large amount of , and reducing agents than . The two major events has been illustrated which are responsible for the formation of small and bigger particles as shown in Fig. 2. Number of coalesce to form the nanostructure , which further interacts with the atom and synthesize the AgNP. If interact with nanostructure, it results in the growth of AgNP with larger size. The colour phase transition from transparent white to yellow during the X-rays irradiation is attributed to the LSPR27 of AgNP and is the first confirmation towards the formation of nanoparticles. After the irradiation, product solution with appropriate dilution was characterized by the UV-Visible photo-spectrometer (JASCO V-630, USA). The UV-visible spectra of product sample after irradiation of aqueous solution of AgNO3 + PVP (d1) and AgNO3 + PVP + isopropanol (A5) along-with the fitted curve is shown in the Fig. 3. The absorption band (422 and 406 nm) of both the samples lies in the characteristic range27 (380–430 nm) of AgNP and confirmed the formation of same.

Bottom Line: It has been universally delineated that the plasmonic metal nanoparticles can enhance the efficiency of photovoltaic cell by increasing the probability of energetic solar photons capturing phenomena using localized surface plasmonic resonance response.X-ray radiolysis based synthesis provides the control over the reaction and prevent the formation of secondary products as occurs in case of chemical reduction route.In the previous studies, synchrotron "white" X-rays had been examined for the synthesis of metal nanoparticles, but that technique limits only upto the material synthesis while in this work we explored the role of "monochromatic" X-rays for the production of bulk amount of nanoparticles which would also provide the feasibility of in-situ characterization.

View Article: PubMed Central - PubMed

Affiliation: Department of Physics, Panjab University, Chandigarh-160014, INDIA.

ABSTRACT
It has been universally delineated that the plasmonic metal nanoparticles can enhance the efficiency of photovoltaic cell by increasing the probability of energetic solar photons capturing phenomena using localized surface plasmonic resonance response. In this paper, we developed a novel in-situ simple approach to synthesize noble plasmonic silver nanoparticles (AgNP) from aqueous poly-vinyl-pyrrolidone solution of metal salt using radiolysis of water via synchrotron monochromatic X-ray irradiation without any chemical reducing agent. X-ray irradiation of water produces hydrated electrons (e(-)aq), superoxide (O(-)2) and atom radicals H*, which triggers the reaction and reduces metal salt. X-ray radiolysis based synthesis provides the control over the reaction and prevent the formation of secondary products as occurs in case of chemical reduction route. In the previous studies, synchrotron "white" X-rays had been examined for the synthesis of metal nanoparticles, but that technique limits only upto the material synthesis while in this work we explored the role of "monochromatic" X-rays for the production of bulk amount of nanoparticles which would also provide the feasibility of in-situ characterization. Transmission electron micrographs show that the synthesized AgNP appears spherical with diameter of 2-6 nm and is in agreement with the size estimation from uv-vis spectra by "Mie theory".

No MeSH data available.


Related in: MedlinePlus