Limits...
Rapid, controllable growth of silver nanostructured surface-enhanced Raman scattering substrates for red blood cell detection.

Zhang S, Tian X, Yin J, Liu Y, Dong Z, Sun JL, Ma W - Sci Rep (2016)

Bottom Line: A greater proportion of the haemoglobin in the RBCs of older donors was in the deoxygenated state than that of the younger donors.This implies that haemoglobin of older people has lower oxygen-carrying capacity than that of younger people.Overall, the fabricated silver substrates show promise in biomedical SERS spectral detection.

View Article: PubMed Central - PubMed

Affiliation: College of Science, Huazhong Agricultural University, 430070, Wuhan, China.

ABSTRACT
Silver nanostructured films suitable for use as surface-enhanced Raman scattering (SERS) substrates are prepared in just 2 hours by the solid-state ionics method. By changing the intensity of the external direct current, we can readily control the surface morphology and growth rate of the silver nanostructured films. A detailed investigation of the surface enhancement of the silver nanostructured films using Rhodamine 6G (R6G) as a molecular probe revealed that the enhancement factor of the films was up to 10(11). We used the silver nanostructured films as substrates in SERS detection of human red blood cells (RBCs). The SERS spectra of RBCs on the silver nanostructured film could be clearly detected at a laser power of just 0.05 mW. Comparison of the SERS spectra of RBCs obtained from younger and older donors showed that the SERS spectra depended on donor age. A greater proportion of the haemoglobin in the RBCs of older donors was in the deoxygenated state than that of the younger donors. This implies that haemoglobin of older people has lower oxygen-carrying capacity than that of younger people. Overall, the fabricated silver substrates show promise in biomedical SERS spectral detection.

No MeSH data available.


SEM images of the morphology of the back of silver nanostructures grown with different external direct currents.The scale bar is 1 μm in all images.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4837339&req=5

f3: SEM images of the morphology of the back of silver nanostructures grown with different external direct currents.The scale bar is 1 μm in all images.

Mentions: The morphology of the back of the silver nanostructures was also characterized by SEM (Fig. 3). These images clearly show how the morphology of the back of the silver nanostructures changes with external direct current. When the current is lower than 10 μA, the morphology of the back of the nanostructures is still ordered nanowires, which is similar to the morphology on the front of the sample. When the current is higher than 20 μA, the back of the silver nanostructures resembles a stair-like structure composed of silver nanoclusters. The clusters are the roots of nanostructures, and their tips are present at the front surface as nanobuds. As external direct current increases, the stairs become denser. Thus, the silver nanobuds on the front surface also become denser, which will lead to more “hot spots” and better surface enhancement. However, when the external direct current was too high (80 μA), the back surface consisted of thick nanorods that provided fewer “hot spots” on the front surface than the nanobuds.


Rapid, controllable growth of silver nanostructured surface-enhanced Raman scattering substrates for red blood cell detection.

Zhang S, Tian X, Yin J, Liu Y, Dong Z, Sun JL, Ma W - Sci Rep (2016)

SEM images of the morphology of the back of silver nanostructures grown with different external direct currents.The scale bar is 1 μm in all images.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4837339&req=5

f3: SEM images of the morphology of the back of silver nanostructures grown with different external direct currents.The scale bar is 1 μm in all images.
Mentions: The morphology of the back of the silver nanostructures was also characterized by SEM (Fig. 3). These images clearly show how the morphology of the back of the silver nanostructures changes with external direct current. When the current is lower than 10 μA, the morphology of the back of the nanostructures is still ordered nanowires, which is similar to the morphology on the front of the sample. When the current is higher than 20 μA, the back of the silver nanostructures resembles a stair-like structure composed of silver nanoclusters. The clusters are the roots of nanostructures, and their tips are present at the front surface as nanobuds. As external direct current increases, the stairs become denser. Thus, the silver nanobuds on the front surface also become denser, which will lead to more “hot spots” and better surface enhancement. However, when the external direct current was too high (80 μA), the back surface consisted of thick nanorods that provided fewer “hot spots” on the front surface than the nanobuds.

Bottom Line: A greater proportion of the haemoglobin in the RBCs of older donors was in the deoxygenated state than that of the younger donors.This implies that haemoglobin of older people has lower oxygen-carrying capacity than that of younger people.Overall, the fabricated silver substrates show promise in biomedical SERS spectral detection.

View Article: PubMed Central - PubMed

Affiliation: College of Science, Huazhong Agricultural University, 430070, Wuhan, China.

ABSTRACT
Silver nanostructured films suitable for use as surface-enhanced Raman scattering (SERS) substrates are prepared in just 2 hours by the solid-state ionics method. By changing the intensity of the external direct current, we can readily control the surface morphology and growth rate of the silver nanostructured films. A detailed investigation of the surface enhancement of the silver nanostructured films using Rhodamine 6G (R6G) as a molecular probe revealed that the enhancement factor of the films was up to 10(11). We used the silver nanostructured films as substrates in SERS detection of human red blood cells (RBCs). The SERS spectra of RBCs on the silver nanostructured film could be clearly detected at a laser power of just 0.05 mW. Comparison of the SERS spectra of RBCs obtained from younger and older donors showed that the SERS spectra depended on donor age. A greater proportion of the haemoglobin in the RBCs of older donors was in the deoxygenated state than that of the younger donors. This implies that haemoglobin of older people has lower oxygen-carrying capacity than that of younger people. Overall, the fabricated silver substrates show promise in biomedical SERS spectral detection.

No MeSH data available.