Limits...
The Ancient Evolutionary History of Polyomaviruses.

Buck CB, Van Doorslaer K, Peretti A, Geoghegan EM, Tisza MJ, An P, Katz JP, Pipas JM, McBride AA, Camus AC, McDermott AJ, Dill JA, Delwart E, Ng TF, Farkas K, Austin C, Kraberger S, Davison W, Pastrana DV, Varsani A - PLoS Pathog. (2016)

Bottom Line: To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods.Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages.The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae.

View Article: PubMed Central - PubMed

Affiliation: Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America.

ABSTRACT
Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae.

Show MeSH

Related in: MedlinePlus

Standard virus/host co-divergence models.The top panels depict the evolution of polyomaviruses within animal lineages. Idealized cartoon trees in the bottom panels represent the expected polyomavirus phylogeny. The silhouettes in the bottom panels represent the animal type in which the polyomavirus at the branch tip would be found.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4836724&req=5

ppat.1005574.g006: Standard virus/host co-divergence models.The top panels depict the evolution of polyomaviruses within animal lineages. Idealized cartoon trees in the bottom panels represent the expected polyomavirus phylogeny. The silhouettes in the bottom panels represent the animal type in which the polyomavirus at the branch tip would be found.

Mentions: Three previously established [36–38] virus-host co-evolutionary models are summarized in simplified cartoon form in Fig 6. In the strict co-divergence model, the rate at which viruses “speciate” from one another exactly matches the rate at which host animals speciate. A group of retroviruses known as foamy viruses are an example of a viral genus that may at least roughly follow this evolutionary model [39]. Many prior studies have established that the family Polyomaviridae, as a whole, does not conform to the strict co-divergence model [37, 40–42].


The Ancient Evolutionary History of Polyomaviruses.

Buck CB, Van Doorslaer K, Peretti A, Geoghegan EM, Tisza MJ, An P, Katz JP, Pipas JM, McBride AA, Camus AC, McDermott AJ, Dill JA, Delwart E, Ng TF, Farkas K, Austin C, Kraberger S, Davison W, Pastrana DV, Varsani A - PLoS Pathog. (2016)

Standard virus/host co-divergence models.The top panels depict the evolution of polyomaviruses within animal lineages. Idealized cartoon trees in the bottom panels represent the expected polyomavirus phylogeny. The silhouettes in the bottom panels represent the animal type in which the polyomavirus at the branch tip would be found.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4836724&req=5

ppat.1005574.g006: Standard virus/host co-divergence models.The top panels depict the evolution of polyomaviruses within animal lineages. Idealized cartoon trees in the bottom panels represent the expected polyomavirus phylogeny. The silhouettes in the bottom panels represent the animal type in which the polyomavirus at the branch tip would be found.
Mentions: Three previously established [36–38] virus-host co-evolutionary models are summarized in simplified cartoon form in Fig 6. In the strict co-divergence model, the rate at which viruses “speciate” from one another exactly matches the rate at which host animals speciate. A group of retroviruses known as foamy viruses are an example of a viral genus that may at least roughly follow this evolutionary model [39]. Many prior studies have established that the family Polyomaviridae, as a whole, does not conform to the strict co-divergence model [37, 40–42].

Bottom Line: To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods.Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages.The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae.

View Article: PubMed Central - PubMed

Affiliation: Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America.

ABSTRACT
Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae.

Show MeSH
Related in: MedlinePlus