Limits...
The Ancient Evolutionary History of Polyomaviruses.

Buck CB, Van Doorslaer K, Peretti A, Geoghegan EM, Tisza MJ, An P, Katz JP, Pipas JM, McBride AA, Camus AC, McDermott AJ, Dill JA, Delwart E, Ng TF, Farkas K, Austin C, Kraberger S, Davison W, Pastrana DV, Varsani A - PLoS Pathog. (2016)

Bottom Line: To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods.Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages.The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae.

View Article: PubMed Central - PubMed

Affiliation: Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America.

ABSTRACT
Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae.

Show MeSH

Related in: MedlinePlus

Predicted genetic organization of newly discovered polyomaviruses.Merkel cell polyomavirus (MCV) is shown as a well-studied reference species. The size of each genome (in basepairs) is listed below the species name. Large T antigen (LT) is indicated in red. Dark gray lollipops indicate the signature HPDKGG motif of the LT “DNAJ” domain (which appears to be missing from the sea bass and notothen polyomaviruses). White lollipops indicate LXCXE motifs, which are hypothetically involved in binding pRb and related tumor suppressor proteins. Each virus encodes a potential myristoylation signal that defines the N-terminus of the minor capsid protein VP2 (green). The VP2 of the supermarket sheep meat-associated virus encodes an internal MALXXΦ motif [1] that defines the N-terminus of a predicted VP3 minor capsid protein, while the other viruses do not. Predicted VP1 major capsid protein genes are shaded blue. ORFs found in the same general arrangement as previously described accessory proteins are also shown. These include small T antigen (sT, pink) Agnoprotein (purple), and the recently described ALTO (orange), which is overprinted in the LT +1 frame. Un-named ORFs of potential interest are shaded light gray. Yellow bars indicate hypothetical metal-binding motifs (CXCXXC or related sequences) observed in some of the predicted accessory proteins. Aside from MCV, for which expressed proteins have been experimentally confirmed, the predicted proteins are hypothetical and do not necessarily account for possible spliced transcripts.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4836724&req=5

ppat.1005574.g001: Predicted genetic organization of newly discovered polyomaviruses.Merkel cell polyomavirus (MCV) is shown as a well-studied reference species. The size of each genome (in basepairs) is listed below the species name. Large T antigen (LT) is indicated in red. Dark gray lollipops indicate the signature HPDKGG motif of the LT “DNAJ” domain (which appears to be missing from the sea bass and notothen polyomaviruses). White lollipops indicate LXCXE motifs, which are hypothetically involved in binding pRb and related tumor suppressor proteins. Each virus encodes a potential myristoylation signal that defines the N-terminus of the minor capsid protein VP2 (green). The VP2 of the supermarket sheep meat-associated virus encodes an internal MALXXΦ motif [1] that defines the N-terminus of a predicted VP3 minor capsid protein, while the other viruses do not. Predicted VP1 major capsid protein genes are shaded blue. ORFs found in the same general arrangement as previously described accessory proteins are also shown. These include small T antigen (sT, pink) Agnoprotein (purple), and the recently described ALTO (orange), which is overprinted in the LT +1 frame. Un-named ORFs of potential interest are shaded light gray. Yellow bars indicate hypothetical metal-binding motifs (CXCXXC or related sequences) observed in some of the predicted accessory proteins. Aside from MCV, for which expressed proteins have been experimentally confirmed, the predicted proteins are hypothetical and do not necessarily account for possible spliced transcripts.

Mentions: In an effort to obtain more divergent polyomaviruses to use as reference points for understanding polyomavirus evolution, we sampled a variety of fish species. We have recently published a brief announcement describing the sequence of a polyomavirus found in samples of a perciform fish, black sea bass (Centropristis striata)[15]. In the current report, we present our discovery of another polyomavirus species found in a different perciform fish, the sharp-spined notothen (Trematomus pennellii) from McMurdo Sound (Ross Sea, Antarctica). The predicted genetic organization of these viruses is shown in Fig 1.


The Ancient Evolutionary History of Polyomaviruses.

Buck CB, Van Doorslaer K, Peretti A, Geoghegan EM, Tisza MJ, An P, Katz JP, Pipas JM, McBride AA, Camus AC, McDermott AJ, Dill JA, Delwart E, Ng TF, Farkas K, Austin C, Kraberger S, Davison W, Pastrana DV, Varsani A - PLoS Pathog. (2016)

Predicted genetic organization of newly discovered polyomaviruses.Merkel cell polyomavirus (MCV) is shown as a well-studied reference species. The size of each genome (in basepairs) is listed below the species name. Large T antigen (LT) is indicated in red. Dark gray lollipops indicate the signature HPDKGG motif of the LT “DNAJ” domain (which appears to be missing from the sea bass and notothen polyomaviruses). White lollipops indicate LXCXE motifs, which are hypothetically involved in binding pRb and related tumor suppressor proteins. Each virus encodes a potential myristoylation signal that defines the N-terminus of the minor capsid protein VP2 (green). The VP2 of the supermarket sheep meat-associated virus encodes an internal MALXXΦ motif [1] that defines the N-terminus of a predicted VP3 minor capsid protein, while the other viruses do not. Predicted VP1 major capsid protein genes are shaded blue. ORFs found in the same general arrangement as previously described accessory proteins are also shown. These include small T antigen (sT, pink) Agnoprotein (purple), and the recently described ALTO (orange), which is overprinted in the LT +1 frame. Un-named ORFs of potential interest are shaded light gray. Yellow bars indicate hypothetical metal-binding motifs (CXCXXC or related sequences) observed in some of the predicted accessory proteins. Aside from MCV, for which expressed proteins have been experimentally confirmed, the predicted proteins are hypothetical and do not necessarily account for possible spliced transcripts.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4836724&req=5

ppat.1005574.g001: Predicted genetic organization of newly discovered polyomaviruses.Merkel cell polyomavirus (MCV) is shown as a well-studied reference species. The size of each genome (in basepairs) is listed below the species name. Large T antigen (LT) is indicated in red. Dark gray lollipops indicate the signature HPDKGG motif of the LT “DNAJ” domain (which appears to be missing from the sea bass and notothen polyomaviruses). White lollipops indicate LXCXE motifs, which are hypothetically involved in binding pRb and related tumor suppressor proteins. Each virus encodes a potential myristoylation signal that defines the N-terminus of the minor capsid protein VP2 (green). The VP2 of the supermarket sheep meat-associated virus encodes an internal MALXXΦ motif [1] that defines the N-terminus of a predicted VP3 minor capsid protein, while the other viruses do not. Predicted VP1 major capsid protein genes are shaded blue. ORFs found in the same general arrangement as previously described accessory proteins are also shown. These include small T antigen (sT, pink) Agnoprotein (purple), and the recently described ALTO (orange), which is overprinted in the LT +1 frame. Un-named ORFs of potential interest are shaded light gray. Yellow bars indicate hypothetical metal-binding motifs (CXCXXC or related sequences) observed in some of the predicted accessory proteins. Aside from MCV, for which expressed proteins have been experimentally confirmed, the predicted proteins are hypothetical and do not necessarily account for possible spliced transcripts.
Mentions: In an effort to obtain more divergent polyomaviruses to use as reference points for understanding polyomavirus evolution, we sampled a variety of fish species. We have recently published a brief announcement describing the sequence of a polyomavirus found in samples of a perciform fish, black sea bass (Centropristis striata)[15]. In the current report, we present our discovery of another polyomavirus species found in a different perciform fish, the sharp-spined notothen (Trematomus pennellii) from McMurdo Sound (Ross Sea, Antarctica). The predicted genetic organization of these viruses is shown in Fig 1.

Bottom Line: To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods.Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages.The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae.

View Article: PubMed Central - PubMed

Affiliation: Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America.

ABSTRACT
Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae.

Show MeSH
Related in: MedlinePlus