Limits...
Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

Hiremath J, Kang KI, Xia M, Elaish M, Binjawadagi B, Ouyang K, Dhakal S, Arcos J, Torrelles JB, Jiang X, Lee CW, Renukaradhya GJ - PLoS ONE (2016)

Bottom Line: Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells.Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge.In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

View Article: PubMed Central - PubMed

Affiliation: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America.

ABSTRACT
Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

No MeSH data available.


Related in: MedlinePlus

Characterization of influenza A virus specific M2e-PP entrapped PLGA-NP.(A) The surface morphology of M2e-PP entrapped PLGA-NP (x7K) showing spherical and uniform sized particles; (B) Size distribution of M2e-PP entrapped PLGA-NP; (C) In vitro protein release profile of M2e-PP entrapped PLGA-NP.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4836704&req=5

pone.0151922.g001: Characterization of influenza A virus specific M2e-PP entrapped PLGA-NP.(A) The surface morphology of M2e-PP entrapped PLGA-NP (x7K) showing spherical and uniform sized particles; (B) Size distribution of M2e-PP entrapped PLGA-NP; (C) In vitro protein release profile of M2e-PP entrapped PLGA-NP.

Mentions: In the PLGA particulate vaccine delivery system, optimum antigen loading efficiency, charge, stability and size of the NP are important [34]. We entrapped M2e-PP and pooled four peptides separately in PLGA-NP using the similar procedure. In vitro characterization of both peptides and M2e-PP entrapped NPs showed comparable results and the data of M2e-PP is shown here. Entrapment efficiency of M2e-PP in NP was 50–54%. Scanning Electron Microscopy (SEM) imaging of NP revealed them as spherical particles (Fig 1A). Size distribution profile of the NP was determined by dynamic light scattering technique and it was 227–316 nm with the majority of NPs around 260 nm (Fig 1B). Surface charge of the particles was -21.93±2.93 mV (an average value of ten runs) as measured by zeta potential analysis. In vitro protein release profile of M2e-PP from NP-entrapped M2e-PP suspended in PBS overtime was quantified under physiological conditions. PLGA-NP containing the vaccine cargo carry a small quantity of surface anchored Ags and they rapidly release upon reconstitution in PBS (≤ 10 min) called the burst release; while the entrapped Ags in NP release over a period of 4–6 weeks [15]. We observed a burst release of 14.3%, cumulative release of 25% (including the burse release) after 2 hr (day 0) and the total release of 64% over a period of 4 weeks (Fig 1C). Thus, our results indicated that PLGA-NP release entrapped M2e-PP gradually, supporting the principle of depot-effect provided by PLGA-NP under in vivo conditions.


Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

Hiremath J, Kang KI, Xia M, Elaish M, Binjawadagi B, Ouyang K, Dhakal S, Arcos J, Torrelles JB, Jiang X, Lee CW, Renukaradhya GJ - PLoS ONE (2016)

Characterization of influenza A virus specific M2e-PP entrapped PLGA-NP.(A) The surface morphology of M2e-PP entrapped PLGA-NP (x7K) showing spherical and uniform sized particles; (B) Size distribution of M2e-PP entrapped PLGA-NP; (C) In vitro protein release profile of M2e-PP entrapped PLGA-NP.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4836704&req=5

pone.0151922.g001: Characterization of influenza A virus specific M2e-PP entrapped PLGA-NP.(A) The surface morphology of M2e-PP entrapped PLGA-NP (x7K) showing spherical and uniform sized particles; (B) Size distribution of M2e-PP entrapped PLGA-NP; (C) In vitro protein release profile of M2e-PP entrapped PLGA-NP.
Mentions: In the PLGA particulate vaccine delivery system, optimum antigen loading efficiency, charge, stability and size of the NP are important [34]. We entrapped M2e-PP and pooled four peptides separately in PLGA-NP using the similar procedure. In vitro characterization of both peptides and M2e-PP entrapped NPs showed comparable results and the data of M2e-PP is shown here. Entrapment efficiency of M2e-PP in NP was 50–54%. Scanning Electron Microscopy (SEM) imaging of NP revealed them as spherical particles (Fig 1A). Size distribution profile of the NP was determined by dynamic light scattering technique and it was 227–316 nm with the majority of NPs around 260 nm (Fig 1B). Surface charge of the particles was -21.93±2.93 mV (an average value of ten runs) as measured by zeta potential analysis. In vitro protein release profile of M2e-PP from NP-entrapped M2e-PP suspended in PBS overtime was quantified under physiological conditions. PLGA-NP containing the vaccine cargo carry a small quantity of surface anchored Ags and they rapidly release upon reconstitution in PBS (≤ 10 min) called the burst release; while the entrapped Ags in NP release over a period of 4–6 weeks [15]. We observed a burst release of 14.3%, cumulative release of 25% (including the burse release) after 2 hr (day 0) and the total release of 64% over a period of 4 weeks (Fig 1C). Thus, our results indicated that PLGA-NP release entrapped M2e-PP gradually, supporting the principle of depot-effect provided by PLGA-NP under in vivo conditions.

Bottom Line: Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells.Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge.In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

View Article: PubMed Central - PubMed

Affiliation: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America.

ABSTRACT
Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

No MeSH data available.


Related in: MedlinePlus