Limits...
Should we use cells, biomaterials, or tissue engineering for cartilage regeneration?

Bernhard JC, Vunjak-Novakovic G - Stem Cell Res Ther (2016)

Bottom Line: After several decades, cartilage regeneration has proven to be anything but easy.With gratifying progress in our understanding of the factors governing cartilage development and function, and cell therapy being successfully used for several decades, there is still a lot to do.We present a concise review of some of the most meritorious efforts in each area, and propose that the solution will most likely emerge from the ongoing attempts to recapitulate certain aspects of native cartilage development.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY, 10032, USA.

ABSTRACT
For a long time, cartilage has been a major focus of the whole field of tissue engineering, both because of the constantly growing need for more effective options for joint repair and the expectation that this apparently simple tissue will be easy to engineer. After several decades, cartilage regeneration has proven to be anything but easy. With gratifying progress in our understanding of the factors governing cartilage development and function, and cell therapy being successfully used for several decades, there is still a lot to do. We lack reliable methods to generate durable articular cartilage that would resemble the original tissue lost to injury or disease. The question posed here is whether the answer would come from the methods using cells, biomaterials, or tissue engineering. We present a concise review of some of the most meritorious efforts in each area, and propose that the solution will most likely emerge from the ongoing attempts to recapitulate certain aspects of native cartilage development. While an ideal recipe for cartilage regeneration is yet to be formulated, we believe that it will contain cell, biomaterial, and tissue engineering approaches, blended into an effective method for seamless repair of articular cartilage.

No MeSH data available.


Related in: MedlinePlus

Chondrogenic development. (1) Mesenchymal condensation. (2) Chondrogenic differentiation of mesenchymal cells and deposition of a cartilage anlage that forms both cartilage and bone. (3) Remodeling of the anlage to form bone and mature cartilage with their inherent structural zones. Cartilage regeneration therapies have followed this approach, having investigated cellular therapies to trigger cartilage formation, biomaterial scaffolds that infiltrating cells can remodel, and tissue-engineered cartilage constructs that mimic the structure and function of native articular cartilage
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4836146&req=5

Fig1: Chondrogenic development. (1) Mesenchymal condensation. (2) Chondrogenic differentiation of mesenchymal cells and deposition of a cartilage anlage that forms both cartilage and bone. (3) Remodeling of the anlage to form bone and mature cartilage with their inherent structural zones. Cartilage regeneration therapies have followed this approach, having investigated cellular therapies to trigger cartilage formation, biomaterial scaffolds that infiltrating cells can remodel, and tissue-engineered cartilage constructs that mimic the structure and function of native articular cartilage

Mentions: In response to this need, novel bioengineering approaches to induce and enhance cartilage regeneration are being developed. When placed into the context of natural cartilage development, these approaches are based on achieving different landmarks in the process of cartilage formation, with the aim to recapitulate the developmental blueprints [2]. It is well established that cartilage formation begins with mesenchymal condensation leading to chondrogenic differentiation of mesenchymal cells. Then, a dense matrix is produced, serving as the cartilage anlage, a template for the subsequent generation of both the articular cartilage and the subchondral bone. The articular chondrocytes maintain their stable phenotype within mature articular cartilage (Fig. 1).Fig. 1


Should we use cells, biomaterials, or tissue engineering for cartilage regeneration?

Bernhard JC, Vunjak-Novakovic G - Stem Cell Res Ther (2016)

Chondrogenic development. (1) Mesenchymal condensation. (2) Chondrogenic differentiation of mesenchymal cells and deposition of a cartilage anlage that forms both cartilage and bone. (3) Remodeling of the anlage to form bone and mature cartilage with their inherent structural zones. Cartilage regeneration therapies have followed this approach, having investigated cellular therapies to trigger cartilage formation, biomaterial scaffolds that infiltrating cells can remodel, and tissue-engineered cartilage constructs that mimic the structure and function of native articular cartilage
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4836146&req=5

Fig1: Chondrogenic development. (1) Mesenchymal condensation. (2) Chondrogenic differentiation of mesenchymal cells and deposition of a cartilage anlage that forms both cartilage and bone. (3) Remodeling of the anlage to form bone and mature cartilage with their inherent structural zones. Cartilage regeneration therapies have followed this approach, having investigated cellular therapies to trigger cartilage formation, biomaterial scaffolds that infiltrating cells can remodel, and tissue-engineered cartilage constructs that mimic the structure and function of native articular cartilage
Mentions: In response to this need, novel bioengineering approaches to induce and enhance cartilage regeneration are being developed. When placed into the context of natural cartilage development, these approaches are based on achieving different landmarks in the process of cartilage formation, with the aim to recapitulate the developmental blueprints [2]. It is well established that cartilage formation begins with mesenchymal condensation leading to chondrogenic differentiation of mesenchymal cells. Then, a dense matrix is produced, serving as the cartilage anlage, a template for the subsequent generation of both the articular cartilage and the subchondral bone. The articular chondrocytes maintain their stable phenotype within mature articular cartilage (Fig. 1).Fig. 1

Bottom Line: After several decades, cartilage regeneration has proven to be anything but easy.With gratifying progress in our understanding of the factors governing cartilage development and function, and cell therapy being successfully used for several decades, there is still a lot to do.We present a concise review of some of the most meritorious efforts in each area, and propose that the solution will most likely emerge from the ongoing attempts to recapitulate certain aspects of native cartilage development.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY, 10032, USA.

ABSTRACT
For a long time, cartilage has been a major focus of the whole field of tissue engineering, both because of the constantly growing need for more effective options for joint repair and the expectation that this apparently simple tissue will be easy to engineer. After several decades, cartilage regeneration has proven to be anything but easy. With gratifying progress in our understanding of the factors governing cartilage development and function, and cell therapy being successfully used for several decades, there is still a lot to do. We lack reliable methods to generate durable articular cartilage that would resemble the original tissue lost to injury or disease. The question posed here is whether the answer would come from the methods using cells, biomaterials, or tissue engineering. We present a concise review of some of the most meritorious efforts in each area, and propose that the solution will most likely emerge from the ongoing attempts to recapitulate certain aspects of native cartilage development. While an ideal recipe for cartilage regeneration is yet to be formulated, we believe that it will contain cell, biomaterial, and tissue engineering approaches, blended into an effective method for seamless repair of articular cartilage.

No MeSH data available.


Related in: MedlinePlus