Limits...
ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background.

Rossdeutsch L, Edwards E, Cookson SJ, Barrieu F, Gambetta GA, Delrot S, Ollat N - BMC Plant Biol. (2016)

Bottom Line: The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration.In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses.In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.

View Article: PubMed Central - PubMed

Affiliation: UMR EGFV, ISVV-INRA, 210 chemin de Leysotte, 33882, Villenave d'Ornon, France.

ABSTRACT

Background: ABA-mediated processes are involved in plant responses to water deficit, especially the control of stomatal opening. However in grapevine it is not known if these processes participate in the phenotypic variation in drought adaptation existing between genotypes. To elucidate this question, the response to short-term water-deficit was analysed in roots and shoots of nine Vitis genotypes differing in their drought adaptation in the field. The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration.

Results: Although transpiration and ABA responses were well-conserved among the genotypes, multifactorial analyses separated Vitis vinifera varieties and V. berlandieri x V. rupestris hybrids (all considered drought tolerant) from the other genotypes studied. Generally, V. vinifera varieties, followed by V. berlandieri x V. rupestris hybrids, displayed more pronounced responses to water-deficit in comparison to the other genotypes. However, changes in transcript abundance in roots were more pronounced for Vitis hybrids than V. vinifera genotypes. Changes in the expression of the cornerstone ABA biosynthetic gene VviNCED1, and the ABA transcriptional regulator VviABF1, were associated with the response of V. vinifera genotypes, while changes in VviNCED2 abundance were associated with the response of other Vitis genotypes. In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses. Interestingly, the expression of VviSnRK2.6 (an AtOST1 ortholog) was constitutively lower in roots and leaves of V. vinifera genotypes and higher in roots of V. berlandieri x V. rupestris hybrids.

Conclusions: This study highlights that Vitis genotypes exhibiting different levels of drought adaptation differ in key steps involved in ABA metabolism and signalling; both under well-watered conditions and in response to water-deficit. In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.

No MeSH data available.


Related in: MedlinePlus

Factorial discriminant analysis of the transcript abundance with the genotype as qualitative sorting variable. The abundance of transcripts for12 genes associated with ABA was recorded 1, 3 and 4 days after withholding irrigation in nine grapevine genotypes. The distribution of variables (a) and individual observations (b) on factors F1 and F2. For A, transcript abundance of each gene is presented in leaves (L) and root tips (R). For B, key to symbols as shown in Fig. 1c
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4836075&req=5

Fig6: Factorial discriminant analysis of the transcript abundance with the genotype as qualitative sorting variable. The abundance of transcripts for12 genes associated with ABA was recorded 1, 3 and 4 days after withholding irrigation in nine grapevine genotypes. The distribution of variables (a) and individual observations (b) on factors F1 and F2. For A, transcript abundance of each gene is presented in leaves (L) and root tips (R). For B, key to symbols as shown in Fig. 1c

Mentions: A discriminant analysis (Fig. 6) was conducted on transcript abundance with genotype as qualitative sorting variable. The first two discriminant functions of this analysis, F1 and F2, explained 39.1 and 27.6 % of total variability, respectively (Fig. 6a). F1 was positively correlated with the abundance of VviSnRK2.6, VviNCED2 and VviRCAR6, and negatively correlated with the abundance of VviNCED1, VviHyd1, VviABF1 and VviABF2 in leaves (Fig. 6a, Additional file 8). F2 was positively correlated with the abundance of VviABF2 and VviRCAR6 in leaves and VviABF2 in roots, and negatively correlated with the abundance of VviSnRK2.6 in roots (Fig. 6a). The score plot of observations on the plan defined by F1 and F2 shows that the genotypes are well discriminated (Fig. 6b). Syrah and Grenache are both discriminated along the negative side of F1, and not along F2. 110R and 140Ru are discriminated along the negative side of F2, and not along F1. The other genotypes were mainly distributed along the F2 axis with SO4 on the negative side, 41B, RGM and 161-49C on the positive side. RGM and 161-49C were also distributed positively along F1.Fig. 6


ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background.

Rossdeutsch L, Edwards E, Cookson SJ, Barrieu F, Gambetta GA, Delrot S, Ollat N - BMC Plant Biol. (2016)

Factorial discriminant analysis of the transcript abundance with the genotype as qualitative sorting variable. The abundance of transcripts for12 genes associated with ABA was recorded 1, 3 and 4 days after withholding irrigation in nine grapevine genotypes. The distribution of variables (a) and individual observations (b) on factors F1 and F2. For A, transcript abundance of each gene is presented in leaves (L) and root tips (R). For B, key to symbols as shown in Fig. 1c
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4836075&req=5

Fig6: Factorial discriminant analysis of the transcript abundance with the genotype as qualitative sorting variable. The abundance of transcripts for12 genes associated with ABA was recorded 1, 3 and 4 days after withholding irrigation in nine grapevine genotypes. The distribution of variables (a) and individual observations (b) on factors F1 and F2. For A, transcript abundance of each gene is presented in leaves (L) and root tips (R). For B, key to symbols as shown in Fig. 1c
Mentions: A discriminant analysis (Fig. 6) was conducted on transcript abundance with genotype as qualitative sorting variable. The first two discriminant functions of this analysis, F1 and F2, explained 39.1 and 27.6 % of total variability, respectively (Fig. 6a). F1 was positively correlated with the abundance of VviSnRK2.6, VviNCED2 and VviRCAR6, and negatively correlated with the abundance of VviNCED1, VviHyd1, VviABF1 and VviABF2 in leaves (Fig. 6a, Additional file 8). F2 was positively correlated with the abundance of VviABF2 and VviRCAR6 in leaves and VviABF2 in roots, and negatively correlated with the abundance of VviSnRK2.6 in roots (Fig. 6a). The score plot of observations on the plan defined by F1 and F2 shows that the genotypes are well discriminated (Fig. 6b). Syrah and Grenache are both discriminated along the negative side of F1, and not along F2. 110R and 140Ru are discriminated along the negative side of F2, and not along F1. The other genotypes were mainly distributed along the F2 axis with SO4 on the negative side, 41B, RGM and 161-49C on the positive side. RGM and 161-49C were also distributed positively along F1.Fig. 6

Bottom Line: The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration.In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses.In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.

View Article: PubMed Central - PubMed

Affiliation: UMR EGFV, ISVV-INRA, 210 chemin de Leysotte, 33882, Villenave d'Ornon, France.

ABSTRACT

Background: ABA-mediated processes are involved in plant responses to water deficit, especially the control of stomatal opening. However in grapevine it is not known if these processes participate in the phenotypic variation in drought adaptation existing between genotypes. To elucidate this question, the response to short-term water-deficit was analysed in roots and shoots of nine Vitis genotypes differing in their drought adaptation in the field. The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration.

Results: Although transpiration and ABA responses were well-conserved among the genotypes, multifactorial analyses separated Vitis vinifera varieties and V. berlandieri x V. rupestris hybrids (all considered drought tolerant) from the other genotypes studied. Generally, V. vinifera varieties, followed by V. berlandieri x V. rupestris hybrids, displayed more pronounced responses to water-deficit in comparison to the other genotypes. However, changes in transcript abundance in roots were more pronounced for Vitis hybrids than V. vinifera genotypes. Changes in the expression of the cornerstone ABA biosynthetic gene VviNCED1, and the ABA transcriptional regulator VviABF1, were associated with the response of V. vinifera genotypes, while changes in VviNCED2 abundance were associated with the response of other Vitis genotypes. In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses. Interestingly, the expression of VviSnRK2.6 (an AtOST1 ortholog) was constitutively lower in roots and leaves of V. vinifera genotypes and higher in roots of V. berlandieri x V. rupestris hybrids.

Conclusions: This study highlights that Vitis genotypes exhibiting different levels of drought adaptation differ in key steps involved in ABA metabolism and signalling; both under well-watered conditions and in response to water-deficit. In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.

No MeSH data available.


Related in: MedlinePlus