Limits...
ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background.

Rossdeutsch L, Edwards E, Cookson SJ, Barrieu F, Gambetta GA, Delrot S, Ollat N - BMC Plant Biol. (2016)

Bottom Line: The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration.In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses.In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.

View Article: PubMed Central - PubMed

Affiliation: UMR EGFV, ISVV-INRA, 210 chemin de Leysotte, 33882, Villenave d'Ornon, France.

ABSTRACT

Background: ABA-mediated processes are involved in plant responses to water deficit, especially the control of stomatal opening. However in grapevine it is not known if these processes participate in the phenotypic variation in drought adaptation existing between genotypes. To elucidate this question, the response to short-term water-deficit was analysed in roots and shoots of nine Vitis genotypes differing in their drought adaptation in the field. The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration.

Results: Although transpiration and ABA responses were well-conserved among the genotypes, multifactorial analyses separated Vitis vinifera varieties and V. berlandieri x V. rupestris hybrids (all considered drought tolerant) from the other genotypes studied. Generally, V. vinifera varieties, followed by V. berlandieri x V. rupestris hybrids, displayed more pronounced responses to water-deficit in comparison to the other genotypes. However, changes in transcript abundance in roots were more pronounced for Vitis hybrids than V. vinifera genotypes. Changes in the expression of the cornerstone ABA biosynthetic gene VviNCED1, and the ABA transcriptional regulator VviABF1, were associated with the response of V. vinifera genotypes, while changes in VviNCED2 abundance were associated with the response of other Vitis genotypes. In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses. Interestingly, the expression of VviSnRK2.6 (an AtOST1 ortholog) was constitutively lower in roots and leaves of V. vinifera genotypes and higher in roots of V. berlandieri x V. rupestris hybrids.

Conclusions: This study highlights that Vitis genotypes exhibiting different levels of drought adaptation differ in key steps involved in ABA metabolism and signalling; both under well-watered conditions and in response to water-deficit. In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.

No MeSH data available.


Related in: MedlinePlus

Concentration in ABA, PA and DPA in shoot and root xylem sap (ng/ml). Mean and standard deviation of abscisic acid (ABA; a & b), phaseic acid (PA; c & d) and dihydrophaseic (DPA; e & f) for non-stressed (water potential > -0.2 MPa; a, c & e) and water-stressed (water potential < -0.8 Mpa; b, d & f) plants. Values among genotypes with the same letter are not statistically different (Tukey-HSD) (n = 1–10)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4836075&req=5

Fig2: Concentration in ABA, PA and DPA in shoot and root xylem sap (ng/ml). Mean and standard deviation of abscisic acid (ABA; a & b), phaseic acid (PA; c & d) and dihydrophaseic (DPA; e & f) for non-stressed (water potential > -0.2 MPa; a, c & e) and water-stressed (water potential < -0.8 Mpa; b, d & f) plants. Values among genotypes with the same letter are not statistically different (Tukey-HSD) (n = 1–10)

Mentions: ABA concentration ([ABA]) and the concentration of its degradation products, [PA] and [DPA], were determined in the xylem sap collected from root and shoot parts. Globally, [ABA], [PA] and [DPA] were strongly correlated between root and shoot xylem sap (Additional file 2) and both [PA] and [DPA] were strongly correlated with [ABA] (Additional file 3). Average [ABA], [PA] and [DPA] in shoot and root xylem sap for the different genotypes for non-stressed and water-stressed plants are presented in Fig. 2. Concentrations were significantly affected by genotype. Water-stressed Grenache had the highest [ABA] in shoot and root xylem sap, but the only significant difference was with 110R in roots. Grenache had significantly the highest [PA] in the shoot xylem sap in comparison with all the non-stressed genotypes and in comparison with water-stressed Syrah, 110R, SO4 and 101-14Mgt. [PA] was the highest in root xylem sap of water-stressed Grenache and RGM, but not significantly in comparison with the other genotypes. Syrah was characterized by significantly higher [DPA], regardless of plant part and water status. In shoot xylem sap of water-stressed plants, the differences with Syrah were significant for 140Ru, 110R, SO4 and 101-14Mgt.Fig. 2


ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background.

Rossdeutsch L, Edwards E, Cookson SJ, Barrieu F, Gambetta GA, Delrot S, Ollat N - BMC Plant Biol. (2016)

Concentration in ABA, PA and DPA in shoot and root xylem sap (ng/ml). Mean and standard deviation of abscisic acid (ABA; a & b), phaseic acid (PA; c & d) and dihydrophaseic (DPA; e & f) for non-stressed (water potential > -0.2 MPa; a, c & e) and water-stressed (water potential < -0.8 Mpa; b, d & f) plants. Values among genotypes with the same letter are not statistically different (Tukey-HSD) (n = 1–10)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4836075&req=5

Fig2: Concentration in ABA, PA and DPA in shoot and root xylem sap (ng/ml). Mean and standard deviation of abscisic acid (ABA; a & b), phaseic acid (PA; c & d) and dihydrophaseic (DPA; e & f) for non-stressed (water potential > -0.2 MPa; a, c & e) and water-stressed (water potential < -0.8 Mpa; b, d & f) plants. Values among genotypes with the same letter are not statistically different (Tukey-HSD) (n = 1–10)
Mentions: ABA concentration ([ABA]) and the concentration of its degradation products, [PA] and [DPA], were determined in the xylem sap collected from root and shoot parts. Globally, [ABA], [PA] and [DPA] were strongly correlated between root and shoot xylem sap (Additional file 2) and both [PA] and [DPA] were strongly correlated with [ABA] (Additional file 3). Average [ABA], [PA] and [DPA] in shoot and root xylem sap for the different genotypes for non-stressed and water-stressed plants are presented in Fig. 2. Concentrations were significantly affected by genotype. Water-stressed Grenache had the highest [ABA] in shoot and root xylem sap, but the only significant difference was with 110R in roots. Grenache had significantly the highest [PA] in the shoot xylem sap in comparison with all the non-stressed genotypes and in comparison with water-stressed Syrah, 110R, SO4 and 101-14Mgt. [PA] was the highest in root xylem sap of water-stressed Grenache and RGM, but not significantly in comparison with the other genotypes. Syrah was characterized by significantly higher [DPA], regardless of plant part and water status. In shoot xylem sap of water-stressed plants, the differences with Syrah were significant for 140Ru, 110R, SO4 and 101-14Mgt.Fig. 2

Bottom Line: The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration.In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses.In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.

View Article: PubMed Central - PubMed

Affiliation: UMR EGFV, ISVV-INRA, 210 chemin de Leysotte, 33882, Villenave d'Ornon, France.

ABSTRACT

Background: ABA-mediated processes are involved in plant responses to water deficit, especially the control of stomatal opening. However in grapevine it is not known if these processes participate in the phenotypic variation in drought adaptation existing between genotypes. To elucidate this question, the response to short-term water-deficit was analysed in roots and shoots of nine Vitis genotypes differing in their drought adaptation in the field. The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration.

Results: Although transpiration and ABA responses were well-conserved among the genotypes, multifactorial analyses separated Vitis vinifera varieties and V. berlandieri x V. rupestris hybrids (all considered drought tolerant) from the other genotypes studied. Generally, V. vinifera varieties, followed by V. berlandieri x V. rupestris hybrids, displayed more pronounced responses to water-deficit in comparison to the other genotypes. However, changes in transcript abundance in roots were more pronounced for Vitis hybrids than V. vinifera genotypes. Changes in the expression of the cornerstone ABA biosynthetic gene VviNCED1, and the ABA transcriptional regulator VviABF1, were associated with the response of V. vinifera genotypes, while changes in VviNCED2 abundance were associated with the response of other Vitis genotypes. In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses. Interestingly, the expression of VviSnRK2.6 (an AtOST1 ortholog) was constitutively lower in roots and leaves of V. vinifera genotypes and higher in roots of V. berlandieri x V. rupestris hybrids.

Conclusions: This study highlights that Vitis genotypes exhibiting different levels of drought adaptation differ in key steps involved in ABA metabolism and signalling; both under well-watered conditions and in response to water-deficit. In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.

No MeSH data available.


Related in: MedlinePlus