Limits...
ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background.

Rossdeutsch L, Edwards E, Cookson SJ, Barrieu F, Gambetta GA, Delrot S, Ollat N - BMC Plant Biol. (2016)

Bottom Line: The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration.In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses.In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.

View Article: PubMed Central - PubMed

Affiliation: UMR EGFV, ISVV-INRA, 210 chemin de Leysotte, 33882, Villenave d'Ornon, France.

ABSTRACT

Background: ABA-mediated processes are involved in plant responses to water deficit, especially the control of stomatal opening. However in grapevine it is not known if these processes participate in the phenotypic variation in drought adaptation existing between genotypes. To elucidate this question, the response to short-term water-deficit was analysed in roots and shoots of nine Vitis genotypes differing in their drought adaptation in the field. The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration.

Results: Although transpiration and ABA responses were well-conserved among the genotypes, multifactorial analyses separated Vitis vinifera varieties and V. berlandieri x V. rupestris hybrids (all considered drought tolerant) from the other genotypes studied. Generally, V. vinifera varieties, followed by V. berlandieri x V. rupestris hybrids, displayed more pronounced responses to water-deficit in comparison to the other genotypes. However, changes in transcript abundance in roots were more pronounced for Vitis hybrids than V. vinifera genotypes. Changes in the expression of the cornerstone ABA biosynthetic gene VviNCED1, and the ABA transcriptional regulator VviABF1, were associated with the response of V. vinifera genotypes, while changes in VviNCED2 abundance were associated with the response of other Vitis genotypes. In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses. Interestingly, the expression of VviSnRK2.6 (an AtOST1 ortholog) was constitutively lower in roots and leaves of V. vinifera genotypes and higher in roots of V. berlandieri x V. rupestris hybrids.

Conclusions: This study highlights that Vitis genotypes exhibiting different levels of drought adaptation differ in key steps involved in ABA metabolism and signalling; both under well-watered conditions and in response to water-deficit. In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.

No MeSH data available.


Related in: MedlinePlus

Physiological responses of nine grapevine genotypes to water-deficit. Shoot water potential (a) and transpiration (b) 1 day (black bars) and 4 days (grey bars) after withholding irrigation. For A and B, bars represent mean ± standard deviation (n = 3) and asterisks show significant water-deficit effect (Kruskall Wallis, p-value < 0.05). For B, values among genotypes with the same letter are not statistical different (day 1 and day 4 analysed separately with an ANOVA on ranks, p-value < 0.05). The relationship between the changes in transpiration and shoot water potential (c), key to symbols: RGM, filled circle; 101-14Mgt, open circle; SO4, inversed filled triangle; 161-49C, open triangle; 41B, filled square; 110R, open square; 140Ru, filled diamond; Syrah, open diamond; Grenache, filled triangle. The dashed line shows the global linear regression for all nine genotypes, solid lines show those genotypes with a significantly different relationship from the global linear regression (Fischer-Snedecor test; p < 0.05)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4836075&req=5

Fig1: Physiological responses of nine grapevine genotypes to water-deficit. Shoot water potential (a) and transpiration (b) 1 day (black bars) and 4 days (grey bars) after withholding irrigation. For A and B, bars represent mean ± standard deviation (n = 3) and asterisks show significant water-deficit effect (Kruskall Wallis, p-value < 0.05). For B, values among genotypes with the same letter are not statistical different (day 1 and day 4 analysed separately with an ANOVA on ranks, p-value < 0.05). The relationship between the changes in transpiration and shoot water potential (c), key to symbols: RGM, filled circle; 101-14Mgt, open circle; SO4, inversed filled triangle; 161-49C, open triangle; 41B, filled square; 110R, open square; 140Ru, filled diamond; Syrah, open diamond; Grenache, filled triangle. The dashed line shows the global linear regression for all nine genotypes, solid lines show those genotypes with a significantly different relationship from the global linear regression (Fischer-Snedecor test; p < 0.05)

Mentions: Four days after withholding irrigation, average pre-dawn shoot water potential was significantly reduced in all genotypes with the exception of SO4 (Fig. 1a). Average pre-dawn water potentials ranged between -0.4 to -1.5 MPa representing moderate to severe levels of water-deficit. The genotype effect was not statistically significant (Fig. 1a). Water potential was maintained until soil water content reached 0.04 g H2O g-1 of dry soil, and then it decreased (Additional file 1).Fig. 1


ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background.

Rossdeutsch L, Edwards E, Cookson SJ, Barrieu F, Gambetta GA, Delrot S, Ollat N - BMC Plant Biol. (2016)

Physiological responses of nine grapevine genotypes to water-deficit. Shoot water potential (a) and transpiration (b) 1 day (black bars) and 4 days (grey bars) after withholding irrigation. For A and B, bars represent mean ± standard deviation (n = 3) and asterisks show significant water-deficit effect (Kruskall Wallis, p-value < 0.05). For B, values among genotypes with the same letter are not statistical different (day 1 and day 4 analysed separately with an ANOVA on ranks, p-value < 0.05). The relationship between the changes in transpiration and shoot water potential (c), key to symbols: RGM, filled circle; 101-14Mgt, open circle; SO4, inversed filled triangle; 161-49C, open triangle; 41B, filled square; 110R, open square; 140Ru, filled diamond; Syrah, open diamond; Grenache, filled triangle. The dashed line shows the global linear regression for all nine genotypes, solid lines show those genotypes with a significantly different relationship from the global linear regression (Fischer-Snedecor test; p < 0.05)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4836075&req=5

Fig1: Physiological responses of nine grapevine genotypes to water-deficit. Shoot water potential (a) and transpiration (b) 1 day (black bars) and 4 days (grey bars) after withholding irrigation. For A and B, bars represent mean ± standard deviation (n = 3) and asterisks show significant water-deficit effect (Kruskall Wallis, p-value < 0.05). For B, values among genotypes with the same letter are not statistical different (day 1 and day 4 analysed separately with an ANOVA on ranks, p-value < 0.05). The relationship between the changes in transpiration and shoot water potential (c), key to symbols: RGM, filled circle; 101-14Mgt, open circle; SO4, inversed filled triangle; 161-49C, open triangle; 41B, filled square; 110R, open square; 140Ru, filled diamond; Syrah, open diamond; Grenache, filled triangle. The dashed line shows the global linear regression for all nine genotypes, solid lines show those genotypes with a significantly different relationship from the global linear regression (Fischer-Snedecor test; p < 0.05)
Mentions: Four days after withholding irrigation, average pre-dawn shoot water potential was significantly reduced in all genotypes with the exception of SO4 (Fig. 1a). Average pre-dawn water potentials ranged between -0.4 to -1.5 MPa representing moderate to severe levels of water-deficit. The genotype effect was not statistically significant (Fig. 1a). Water potential was maintained until soil water content reached 0.04 g H2O g-1 of dry soil, and then it decreased (Additional file 1).Fig. 1

Bottom Line: The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration.In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses.In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.

View Article: PubMed Central - PubMed

Affiliation: UMR EGFV, ISVV-INRA, 210 chemin de Leysotte, 33882, Villenave d'Ornon, France.

ABSTRACT

Background: ABA-mediated processes are involved in plant responses to water deficit, especially the control of stomatal opening. However in grapevine it is not known if these processes participate in the phenotypic variation in drought adaptation existing between genotypes. To elucidate this question, the response to short-term water-deficit was analysed in roots and shoots of nine Vitis genotypes differing in their drought adaptation in the field. The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration.

Results: Although transpiration and ABA responses were well-conserved among the genotypes, multifactorial analyses separated Vitis vinifera varieties and V. berlandieri x V. rupestris hybrids (all considered drought tolerant) from the other genotypes studied. Generally, V. vinifera varieties, followed by V. berlandieri x V. rupestris hybrids, displayed more pronounced responses to water-deficit in comparison to the other genotypes. However, changes in transcript abundance in roots were more pronounced for Vitis hybrids than V. vinifera genotypes. Changes in the expression of the cornerstone ABA biosynthetic gene VviNCED1, and the ABA transcriptional regulator VviABF1, were associated with the response of V. vinifera genotypes, while changes in VviNCED2 abundance were associated with the response of other Vitis genotypes. In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses. Interestingly, the expression of VviSnRK2.6 (an AtOST1 ortholog) was constitutively lower in roots and leaves of V. vinifera genotypes and higher in roots of V. berlandieri x V. rupestris hybrids.

Conclusions: This study highlights that Vitis genotypes exhibiting different levels of drought adaptation differ in key steps involved in ABA metabolism and signalling; both under well-watered conditions and in response to water-deficit. In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.

No MeSH data available.


Related in: MedlinePlus