Limits...
Evaluation of the in vitro expression of ATP binding-cassette (ABC) proteins in an Ixodes ricinus cell line exposed to ivermectin.

Mangia C, Vismarra A, Kramer L, Bell-Sakyi L, Porretta D, Otranto D, Epis S, Grandi G - Parasit Vectors (2016)

Bottom Line: Cell viability ranged between 84% and 92% with no significant differences between untreated and treated cells. qRT-PCR showed that ABC pump expression was not significantly modulated by ivermectin treatment.ABCB6 and ABCB10 gene expression was not modulated by ivermectin treatment and ABCB1 expression was not detected.Development of an in vitro model for the study of acaricide resistance mechanisms would greatly facilitate screening for drug resistance in ticks.

View Article: PubMed Central - PubMed

Affiliation: Department of Veterinary Sciences, University of Parma, 43126, Parma, Italy.

ABSTRACT

Background: Ticks are among the most important vectors of pathogens causing human and animal disease. Acaricides are used to control tick infestation, although there are increasing reports of resistance. Recently, over-expression of ATP-binding cassette (ABC) transporter proteins (P-glycoproteins, PgP) has been implicated in resistance to the acaricide ivermectin in the ticks Rhipicephalus (Boophilus) microplus and Rhipicephalus sanguineus sensu lato. Ixodid tick cell lines have been used to investigate drug resistance mechanisms. The aim of the present study was to evaluate expression of several PgPs in the Ixodes ricinus-derived cell line IRE/CTVM19 and to determine modulation of expression following treatment with ivermectin.

Findings: IRE/CTVM19 cells were treated with different concentrations of ivermectin (0, 11, 22 or 33 μM) and incubated for 10 days. Evaluation of viability and relative expression of ABCB1, ABCB6, ABCB8 and ABCB10 genes were carried out at day 10 post treatment. Cell viability ranged between 84% and 92% with no significant differences between untreated and treated cells. qRT-PCR showed that ABC pump expression was not significantly modulated by ivermectin treatment. Expression of the ABCB8 PgP subfamily revealed a biphasic trend, based on the ivermectin concentration. ABCB6 and ABCB10 gene expression was not modulated by ivermectin treatment and ABCB1 expression was not detected.

Conclusions: This is the first report of PgP expression in an I. ricinus-derived tick cell line. Development of an in vitro model for the study of acaricide resistance mechanisms would greatly facilitate screening for drug resistance in ticks.

No MeSH data available.


Related in: MedlinePlus

Expression of ABCB6, ABCB8 and ABCB10 genes in IRE/CTVM19 cells untreated (L-15), treated with 0.1% DMSO alone (DMSO) or treated with different concentrations of ivermectin (IVM) in 0.1% DMSO. Results were expressed as Relative Normalised Expression (ΔΔCt) vs expression of the housekeeping gene (β-Actin) and were presented as the mean ± S.E.M. of three experiments performed with four replicates each
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4835901&req=5

Fig4: Expression of ABCB6, ABCB8 and ABCB10 genes in IRE/CTVM19 cells untreated (L-15), treated with 0.1% DMSO alone (DMSO) or treated with different concentrations of ivermectin (IVM) in 0.1% DMSO. Results were expressed as Relative Normalised Expression (ΔΔCt) vs expression of the housekeeping gene (β-Actin) and were presented as the mean ± S.E.M. of three experiments performed with four replicates each

Mentions: Quantitative RT-PCR analysis showed that ABC gene expression was present in IRE/CTVM19 cells but not significantly modulated following ivermectin treatment (Fig. 4). Expression of the ABCB1 gene was not detectable at any time point in any condition (data not shown). ABCB6, ABCB8 and ABCB10 were detected, but no significant differences were seen between untreated and treated cultures or between different doses of IVM.Fig. 4


Evaluation of the in vitro expression of ATP binding-cassette (ABC) proteins in an Ixodes ricinus cell line exposed to ivermectin.

Mangia C, Vismarra A, Kramer L, Bell-Sakyi L, Porretta D, Otranto D, Epis S, Grandi G - Parasit Vectors (2016)

Expression of ABCB6, ABCB8 and ABCB10 genes in IRE/CTVM19 cells untreated (L-15), treated with 0.1% DMSO alone (DMSO) or treated with different concentrations of ivermectin (IVM) in 0.1% DMSO. Results were expressed as Relative Normalised Expression (ΔΔCt) vs expression of the housekeeping gene (β-Actin) and were presented as the mean ± S.E.M. of three experiments performed with four replicates each
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4835901&req=5

Fig4: Expression of ABCB6, ABCB8 and ABCB10 genes in IRE/CTVM19 cells untreated (L-15), treated with 0.1% DMSO alone (DMSO) or treated with different concentrations of ivermectin (IVM) in 0.1% DMSO. Results were expressed as Relative Normalised Expression (ΔΔCt) vs expression of the housekeeping gene (β-Actin) and were presented as the mean ± S.E.M. of three experiments performed with four replicates each
Mentions: Quantitative RT-PCR analysis showed that ABC gene expression was present in IRE/CTVM19 cells but not significantly modulated following ivermectin treatment (Fig. 4). Expression of the ABCB1 gene was not detectable at any time point in any condition (data not shown). ABCB6, ABCB8 and ABCB10 were detected, but no significant differences were seen between untreated and treated cultures or between different doses of IVM.Fig. 4

Bottom Line: Cell viability ranged between 84% and 92% with no significant differences between untreated and treated cells. qRT-PCR showed that ABC pump expression was not significantly modulated by ivermectin treatment.ABCB6 and ABCB10 gene expression was not modulated by ivermectin treatment and ABCB1 expression was not detected.Development of an in vitro model for the study of acaricide resistance mechanisms would greatly facilitate screening for drug resistance in ticks.

View Article: PubMed Central - PubMed

Affiliation: Department of Veterinary Sciences, University of Parma, 43126, Parma, Italy.

ABSTRACT

Background: Ticks are among the most important vectors of pathogens causing human and animal disease. Acaricides are used to control tick infestation, although there are increasing reports of resistance. Recently, over-expression of ATP-binding cassette (ABC) transporter proteins (P-glycoproteins, PgP) has been implicated in resistance to the acaricide ivermectin in the ticks Rhipicephalus (Boophilus) microplus and Rhipicephalus sanguineus sensu lato. Ixodid tick cell lines have been used to investigate drug resistance mechanisms. The aim of the present study was to evaluate expression of several PgPs in the Ixodes ricinus-derived cell line IRE/CTVM19 and to determine modulation of expression following treatment with ivermectin.

Findings: IRE/CTVM19 cells were treated with different concentrations of ivermectin (0, 11, 22 or 33 μM) and incubated for 10 days. Evaluation of viability and relative expression of ABCB1, ABCB6, ABCB8 and ABCB10 genes were carried out at day 10 post treatment. Cell viability ranged between 84% and 92% with no significant differences between untreated and treated cells. qRT-PCR showed that ABC pump expression was not significantly modulated by ivermectin treatment. Expression of the ABCB8 PgP subfamily revealed a biphasic trend, based on the ivermectin concentration. ABCB6 and ABCB10 gene expression was not modulated by ivermectin treatment and ABCB1 expression was not detected.

Conclusions: This is the first report of PgP expression in an I. ricinus-derived tick cell line. Development of an in vitro model for the study of acaricide resistance mechanisms would greatly facilitate screening for drug resistance in ticks.

No MeSH data available.


Related in: MedlinePlus