Limits...
Insights into the Mechanisms Underlying Ultraviolet-C Induced Resveratrol Metabolism in Grapevine (V. amurensis Rupr.) cv. "Tonghua-3".

Yin X, Singer SD, Qiao H, Liu Y, Jiao C, Wang H, Li Z, Fei Z, Wang Y, Fan C, Wang X - Front Plant Sci (2016)

Bottom Line: Tonghua-3 following UV-C treatment, to accelerate research into resveratrol metabolism.Comparative RNA-Seq profiling of UV-C treated and untreated grape berries resulted in the identification of a large number of differentially expressed genes.This transcriptome data set provides new insight into the response of grape berries to UV-C treatment, and suggests candidate genes, or promoter activity of related genes, that could be used in future functional and molecular biological studies of resveratrol metabolism.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.

ABSTRACT
Stilbene compounds belong to a family of secondary metabolites that are derived from the phenylpropanoid pathway. Production of the stilbene phytoalexin, resveratrol, in grape (Vitis spp.) berries is known to be induced by ultraviolet-C radiation (UV-C), which has numerous regulatory effects on plant physiology. While previous studies have described changes in gene expression caused by UV-C light in several plant species, such information has yet to be reported for grapevine. We investigated both the resveratrol content and gene expression responses of berries from V. amurensis cv. Tonghua-3 following UV-C treatment, to accelerate research into resveratrol metabolism. Comparative RNA-Seq profiling of UV-C treated and untreated grape berries resulted in the identification of a large number of differentially expressed genes. Gene ontology (GO) term classification and biochemical pathway analyses suggested that UV-C treatment caused changes in various cellular processes, as well as in both hormone and secondary metabolism. The data further indicate that UV-C induced increases in resveratrol may be related to the transcriptional regulation of genes involved in the production of secondary metabolites and signaling, as well as several transcription factors. We also observed that following UV-C treatment, 22 stilbene synthase (STS) genes exhibited increases in their expression levels and a VaSTS promoter drove the expression of the GUS reporter gene when expressed in tobacco. We therefore propose that UV-C induction of VaSTS expression is an important factor in promoting resveratrol accumulation. This transcriptome data set provides new insight into the response of grape berries to UV-C treatment, and suggests candidate genes, or promoter activity of related genes, that could be used in future functional and molecular biological studies of resveratrol metabolism.

No MeSH data available.


Expression of genes involved in secondary metabolism after UV-C irradiation. The schematic representation was determined by transcriptome data integration. Different shades of red and green express the extent of change according to the color bar provided (log2 ratio of control); black indicates no change. PAL, Phenylalanine ammonia-lyase; 4CL, 4-coumarate:CoA ligase; C4H, cinnamate 4-hydroxylase; CHS, chalcone synthase; ROMT, resveratrol O-methyltransferase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H,flavonoid 3′,5′-hydroxylase; FLS, flavonol synthase; DFR, dihydroflavonol-4-reductase; LDOX, leucoanthocyanidin dioxygenase.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835806&req=5

Figure 4: Expression of genes involved in secondary metabolism after UV-C irradiation. The schematic representation was determined by transcriptome data integration. Different shades of red and green express the extent of change according to the color bar provided (log2 ratio of control); black indicates no change. PAL, Phenylalanine ammonia-lyase; 4CL, 4-coumarate:CoA ligase; C4H, cinnamate 4-hydroxylase; CHS, chalcone synthase; ROMT, resveratrol O-methyltransferase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H,flavonoid 3′,5′-hydroxylase; FLS, flavonol synthase; DFR, dihydroflavonol-4-reductase; LDOX, leucoanthocyanidin dioxygenase.

Mentions: Secondary metabolic pathways, such as the biosynthesis of flavonoids, phenylpropanoids (Figure 4), chlorogenic acid (Figure S5), free phenylpropanoid acid, acetyl-CoA (from pyruvate), as well as acetoin biosynthesis III and the pathway leading to the biosynthesis of phenylalanine, tyrosine, and tryptophan, all had associated genes whose expression was significantly altered 4 h and 24 h following UV-C treatment. In the case of the stilbenoid and flavonoid biosynthetic pathways, 22 genes encoding stilbene synthases (STS) exhibited 8- to 210-fold increases in their expression levels 4 h after UV-C treatment, and 29- to 64-fold increases in expression 24 h post-irradiation (Figure 4). Several genes encoding enzymes involved in phenylpropanoid biosynthesis were also highly up-regulated by the UV-C treatment (Figure 4; Tables S3, S4). These enzymes included phenylalanine ammonia-lyase (PAL) proteins, which catalyze the first step in the biosynthesis of phenylpropanoids, cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligases (4CL) (Figure 4). Differentially expressed UV-C responsive MYB transcription factors (transcription factors; TFs) were also identified in this study (Figure 5), with a total of 9 MYB TFs identified 4 h and 24 h following UV-C treatment, including 5 with higher and 4 with lower expression.


Insights into the Mechanisms Underlying Ultraviolet-C Induced Resveratrol Metabolism in Grapevine (V. amurensis Rupr.) cv. "Tonghua-3".

Yin X, Singer SD, Qiao H, Liu Y, Jiao C, Wang H, Li Z, Fei Z, Wang Y, Fan C, Wang X - Front Plant Sci (2016)

Expression of genes involved in secondary metabolism after UV-C irradiation. The schematic representation was determined by transcriptome data integration. Different shades of red and green express the extent of change according to the color bar provided (log2 ratio of control); black indicates no change. PAL, Phenylalanine ammonia-lyase; 4CL, 4-coumarate:CoA ligase; C4H, cinnamate 4-hydroxylase; CHS, chalcone synthase; ROMT, resveratrol O-methyltransferase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H,flavonoid 3′,5′-hydroxylase; FLS, flavonol synthase; DFR, dihydroflavonol-4-reductase; LDOX, leucoanthocyanidin dioxygenase.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835806&req=5

Figure 4: Expression of genes involved in secondary metabolism after UV-C irradiation. The schematic representation was determined by transcriptome data integration. Different shades of red and green express the extent of change according to the color bar provided (log2 ratio of control); black indicates no change. PAL, Phenylalanine ammonia-lyase; 4CL, 4-coumarate:CoA ligase; C4H, cinnamate 4-hydroxylase; CHS, chalcone synthase; ROMT, resveratrol O-methyltransferase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H,flavonoid 3′,5′-hydroxylase; FLS, flavonol synthase; DFR, dihydroflavonol-4-reductase; LDOX, leucoanthocyanidin dioxygenase.
Mentions: Secondary metabolic pathways, such as the biosynthesis of flavonoids, phenylpropanoids (Figure 4), chlorogenic acid (Figure S5), free phenylpropanoid acid, acetyl-CoA (from pyruvate), as well as acetoin biosynthesis III and the pathway leading to the biosynthesis of phenylalanine, tyrosine, and tryptophan, all had associated genes whose expression was significantly altered 4 h and 24 h following UV-C treatment. In the case of the stilbenoid and flavonoid biosynthetic pathways, 22 genes encoding stilbene synthases (STS) exhibited 8- to 210-fold increases in their expression levels 4 h after UV-C treatment, and 29- to 64-fold increases in expression 24 h post-irradiation (Figure 4). Several genes encoding enzymes involved in phenylpropanoid biosynthesis were also highly up-regulated by the UV-C treatment (Figure 4; Tables S3, S4). These enzymes included phenylalanine ammonia-lyase (PAL) proteins, which catalyze the first step in the biosynthesis of phenylpropanoids, cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligases (4CL) (Figure 4). Differentially expressed UV-C responsive MYB transcription factors (transcription factors; TFs) were also identified in this study (Figure 5), with a total of 9 MYB TFs identified 4 h and 24 h following UV-C treatment, including 5 with higher and 4 with lower expression.

Bottom Line: Tonghua-3 following UV-C treatment, to accelerate research into resveratrol metabolism.Comparative RNA-Seq profiling of UV-C treated and untreated grape berries resulted in the identification of a large number of differentially expressed genes.This transcriptome data set provides new insight into the response of grape berries to UV-C treatment, and suggests candidate genes, or promoter activity of related genes, that could be used in future functional and molecular biological studies of resveratrol metabolism.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China.

ABSTRACT
Stilbene compounds belong to a family of secondary metabolites that are derived from the phenylpropanoid pathway. Production of the stilbene phytoalexin, resveratrol, in grape (Vitis spp.) berries is known to be induced by ultraviolet-C radiation (UV-C), which has numerous regulatory effects on plant physiology. While previous studies have described changes in gene expression caused by UV-C light in several plant species, such information has yet to be reported for grapevine. We investigated both the resveratrol content and gene expression responses of berries from V. amurensis cv. Tonghua-3 following UV-C treatment, to accelerate research into resveratrol metabolism. Comparative RNA-Seq profiling of UV-C treated and untreated grape berries resulted in the identification of a large number of differentially expressed genes. Gene ontology (GO) term classification and biochemical pathway analyses suggested that UV-C treatment caused changes in various cellular processes, as well as in both hormone and secondary metabolism. The data further indicate that UV-C induced increases in resveratrol may be related to the transcriptional regulation of genes involved in the production of secondary metabolites and signaling, as well as several transcription factors. We also observed that following UV-C treatment, 22 stilbene synthase (STS) genes exhibited increases in their expression levels and a VaSTS promoter drove the expression of the GUS reporter gene when expressed in tobacco. We therefore propose that UV-C induction of VaSTS expression is an important factor in promoting resveratrol accumulation. This transcriptome data set provides new insight into the response of grape berries to UV-C treatment, and suggests candidate genes, or promoter activity of related genes, that could be used in future functional and molecular biological studies of resveratrol metabolism.

No MeSH data available.