Limits...
Facile preparation of salivary extracellular vesicles for cancer proteomics.

Sun Y, Xia Z, Shang Z, Sun K, Niu X, Qian L, Fan LY, Cao CX, Xiao H - Sci Rep (2016)

Bottom Line: Affinity chromatography column combined with filter system (ACCF) was developed to efficiently remove the high abundant proteins and viscous interferences of saliva.Protein profiling in the SEVs obtained by this strategy was compared with conventional centrifugation method, which demonstrated that about 70% more SEVs proteins could be revealed.Our results demonstrated that SEVs prepared through the developed strategy are valuable samples for proteomics and could serve as a promising liquid biopsy for cancer.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Microbial Metabolism, Laboratory of Analytical Biochemistry and Bioseparation, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

ABSTRACT
Extracellular vesicles (EVs) are membrane surrounded structures released by cells, which have been increasingly recognized as mediators of intercellular communication. Recent reports indicate that EVs participate in important biological processes and could serve as potential source for cancer biomarkers. As an attractive EVs source with merit of non-invasiveness, human saliva is a unique medium for clinical diagnostics. Thus, we proposed a facile approach to prepare salivary extracellular vesicles (SEVs). Affinity chromatography column combined with filter system (ACCF) was developed to efficiently remove the high abundant proteins and viscous interferences of saliva. Protein profiling in the SEVs obtained by this strategy was compared with conventional centrifugation method, which demonstrated that about 70% more SEVs proteins could be revealed. To explore its utility for cancer proteomics, we analyzed the proteome of SEVs in lung cancer patients and normal controls. Shotgun proteomic analysis illustrated that 113 and 95 proteins have been identified in cancer group and control group, respectively. Among those 63 proteins that have been consistently discovered only in cancer group, 12 proteins are lung cancer related. Our results demonstrated that SEVs prepared through the developed strategy are valuable samples for proteomics and could serve as a promising liquid biopsy for cancer.

No MeSH data available.


Related in: MedlinePlus

Total ion chromatogram of SEVs’ peptides from primordial saliva (A) and ACCF purified saliva (B).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835767&req=5

f5: Total ion chromatogram of SEVs’ peptides from primordial saliva (A) and ACCF purified saliva (B).

Mentions: To further demonstrate the interference of amylase on SEVs isolation and their protein identification, the total ion chromatograms of SEVs’ peptides prepared through ACCF method and the conventional one were compared, as shown in Fig. 5. The SEVs sample obtained after removal of amylase eluted more peaks between retention time of 90 mins and 130 mins (Fig. 5B), which partially contributed to the identification of 53 unique proteins for SEVs.


Facile preparation of salivary extracellular vesicles for cancer proteomics.

Sun Y, Xia Z, Shang Z, Sun K, Niu X, Qian L, Fan LY, Cao CX, Xiao H - Sci Rep (2016)

Total ion chromatogram of SEVs’ peptides from primordial saliva (A) and ACCF purified saliva (B).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835767&req=5

f5: Total ion chromatogram of SEVs’ peptides from primordial saliva (A) and ACCF purified saliva (B).
Mentions: To further demonstrate the interference of amylase on SEVs isolation and their protein identification, the total ion chromatograms of SEVs’ peptides prepared through ACCF method and the conventional one were compared, as shown in Fig. 5. The SEVs sample obtained after removal of amylase eluted more peaks between retention time of 90 mins and 130 mins (Fig. 5B), which partially contributed to the identification of 53 unique proteins for SEVs.

Bottom Line: Affinity chromatography column combined with filter system (ACCF) was developed to efficiently remove the high abundant proteins and viscous interferences of saliva.Protein profiling in the SEVs obtained by this strategy was compared with conventional centrifugation method, which demonstrated that about 70% more SEVs proteins could be revealed.Our results demonstrated that SEVs prepared through the developed strategy are valuable samples for proteomics and could serve as a promising liquid biopsy for cancer.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Microbial Metabolism, Laboratory of Analytical Biochemistry and Bioseparation, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

ABSTRACT
Extracellular vesicles (EVs) are membrane surrounded structures released by cells, which have been increasingly recognized as mediators of intercellular communication. Recent reports indicate that EVs participate in important biological processes and could serve as potential source for cancer biomarkers. As an attractive EVs source with merit of non-invasiveness, human saliva is a unique medium for clinical diagnostics. Thus, we proposed a facile approach to prepare salivary extracellular vesicles (SEVs). Affinity chromatography column combined with filter system (ACCF) was developed to efficiently remove the high abundant proteins and viscous interferences of saliva. Protein profiling in the SEVs obtained by this strategy was compared with conventional centrifugation method, which demonstrated that about 70% more SEVs proteins could be revealed. To explore its utility for cancer proteomics, we analyzed the proteome of SEVs in lung cancer patients and normal controls. Shotgun proteomic analysis illustrated that 113 and 95 proteins have been identified in cancer group and control group, respectively. Among those 63 proteins that have been consistently discovered only in cancer group, 12 proteins are lung cancer related. Our results demonstrated that SEVs prepared through the developed strategy are valuable samples for proteomics and could serve as a promising liquid biopsy for cancer.

No MeSH data available.


Related in: MedlinePlus