Limits...
Understanding Dynamics of Information Transmission in Drosophila melanogaster Using a Statistical Modeling Framework for Longitudinal Network Data (the RSiena Package).

Pasquaretta C, Klenschi E, Pansanel J, Battesti M, Mery F, Sueur C - Front Psychol (2016)

Bottom Line: We estimated the degree to which the uninformed flies had successfully acquired the information carried by informed individuals using the proportion of eggs laid by uninformed flies on the medium their conspecifics had been trained to favor.Interestingly, we found that the degree of reciprocation, the tendency of individuals to form mutual connections between each other, strongly affected oviposition site choice in uninformed flies.This work highlights the great potential of RSiena and its utility in the studies of interaction networks among non-human animals.

View Article: PubMed Central - PubMed

Affiliation: Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche ScientifiqueStrasbourg, France; Institut Pluridisciplinaire Hubert Curien, Université de StrasbourgStrasbourg, France.

ABSTRACT
Social learning - the transmission of behaviors through observation or interaction with conspecifics - can be viewed as a decision-making process driven by interactions among individuals. Animal group structures change over time and interactions among individuals occur in particular orders that may be repeated following specific patterns, change in their nature, or disappear completely. Here we used a stochastic actor-oriented model built using the RSiena package in R to estimate individual behaviors and their changes through time, by analyzing the dynamic of the interaction network of the fruit fly Drosophila melanogaster during social learning experiments. In particular, we re-analyzed an experimental dataset where uninformed flies, left free to interact with informed ones, acquired and later used information about oviposition site choice obtained by social interactions. We estimated the degree to which the uninformed flies had successfully acquired the information carried by informed individuals using the proportion of eggs laid by uninformed flies on the medium their conspecifics had been trained to favor. Regardless of the degree of information acquisition measured in uninformed individuals, they always received and started interactions more frequently than informed ones did. However, information was efficiently transmitted (i.e., uninformed flies predominantly laid eggs on the same medium informed ones had learn to prefer) only when the difference in contacts sent between the two fly types was small. Interestingly, we found that the degree of reciprocation, the tendency of individuals to form mutual connections between each other, strongly affected oviposition site choice in uninformed flies. This work highlights the great potential of RSiena and its utility in the studies of interaction networks among non-human animals.

No MeSH data available.


Related in: MedlinePlus

Wald t-test values for the alter and ego effects obtained by the RSiena model estimation. The alter effect represents which class of actors increases its indegree more rapidly, while the ego effect expresses which class increases its outdegree more rapidly. These t-statistics were estimated over time intervals of increasing length for the two transmission conditions. Results show that uninformed individuals display both a higher outdegree and indegree than informed individuals (negative t-statistics) and that the difference in outdegree between the two classes is more important than in indegree. Best fitted lines for the quadratic models are represented for “Followed” (black) and “Avoided” (grey) conditions. Shaded areas represent the standard errors of the models.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835720&req=5

Figure 3: Wald t-test values for the alter and ego effects obtained by the RSiena model estimation. The alter effect represents which class of actors increases its indegree more rapidly, while the ego effect expresses which class increases its outdegree more rapidly. These t-statistics were estimated over time intervals of increasing length for the two transmission conditions. Results show that uninformed individuals display both a higher outdegree and indegree than informed individuals (negative t-statistics) and that the difference in outdegree between the two classes is more important than in indegree. Best fitted lines for the quadratic models are represented for “Followed” (black) and “Avoided” (grey) conditions. Shaded areas represent the standard errors of the models.

Mentions: To better evaluate the influence of the ego and alter effects over time we repeated the RSiena procedure over intervals of increasing lengths, starting from the first 10-min interval and adding successive intervals one by one. An analysis of variance showed that both ego and alter t-statistics were better explained as a quadratic function of time (egoquadratic_linear: F = 63.732, P < 0.001; alterquadratic_linear: F = 17.016, P < 0.001), meaning that informed and uninformed flies first increase their differences in terms of numbers of contacts started and received, then reduce these behavioral differences over time (Figure 3). The difference in the number of contacts received by informed and uninformed flies was larger when information was followed than when it was not (ConditionFollowed_Avoided: t = 3.084, P < 0.001). There is also a large discrepancy in the magnitude of the t-statistics associated with the ego effect: the difference in the number of individuals contacted by informed and uninformed flies is constantly smaller in the “Followed” condition (ConditionFollowed_Avoided: t = -19.231, P < 0.001). These results suggest that a large heterogeneity in the number of contacts sent and received by both fly types drove uninformed flies to choose the opposite oviposition site informed flies were previously trained to choose.


Understanding Dynamics of Information Transmission in Drosophila melanogaster Using a Statistical Modeling Framework for Longitudinal Network Data (the RSiena Package).

Pasquaretta C, Klenschi E, Pansanel J, Battesti M, Mery F, Sueur C - Front Psychol (2016)

Wald t-test values for the alter and ego effects obtained by the RSiena model estimation. The alter effect represents which class of actors increases its indegree more rapidly, while the ego effect expresses which class increases its outdegree more rapidly. These t-statistics were estimated over time intervals of increasing length for the two transmission conditions. Results show that uninformed individuals display both a higher outdegree and indegree than informed individuals (negative t-statistics) and that the difference in outdegree between the two classes is more important than in indegree. Best fitted lines for the quadratic models are represented for “Followed” (black) and “Avoided” (grey) conditions. Shaded areas represent the standard errors of the models.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835720&req=5

Figure 3: Wald t-test values for the alter and ego effects obtained by the RSiena model estimation. The alter effect represents which class of actors increases its indegree more rapidly, while the ego effect expresses which class increases its outdegree more rapidly. These t-statistics were estimated over time intervals of increasing length for the two transmission conditions. Results show that uninformed individuals display both a higher outdegree and indegree than informed individuals (negative t-statistics) and that the difference in outdegree between the two classes is more important than in indegree. Best fitted lines for the quadratic models are represented for “Followed” (black) and “Avoided” (grey) conditions. Shaded areas represent the standard errors of the models.
Mentions: To better evaluate the influence of the ego and alter effects over time we repeated the RSiena procedure over intervals of increasing lengths, starting from the first 10-min interval and adding successive intervals one by one. An analysis of variance showed that both ego and alter t-statistics were better explained as a quadratic function of time (egoquadratic_linear: F = 63.732, P < 0.001; alterquadratic_linear: F = 17.016, P < 0.001), meaning that informed and uninformed flies first increase their differences in terms of numbers of contacts started and received, then reduce these behavioral differences over time (Figure 3). The difference in the number of contacts received by informed and uninformed flies was larger when information was followed than when it was not (ConditionFollowed_Avoided: t = 3.084, P < 0.001). There is also a large discrepancy in the magnitude of the t-statistics associated with the ego effect: the difference in the number of individuals contacted by informed and uninformed flies is constantly smaller in the “Followed” condition (ConditionFollowed_Avoided: t = -19.231, P < 0.001). These results suggest that a large heterogeneity in the number of contacts sent and received by both fly types drove uninformed flies to choose the opposite oviposition site informed flies were previously trained to choose.

Bottom Line: We estimated the degree to which the uninformed flies had successfully acquired the information carried by informed individuals using the proportion of eggs laid by uninformed flies on the medium their conspecifics had been trained to favor.Interestingly, we found that the degree of reciprocation, the tendency of individuals to form mutual connections between each other, strongly affected oviposition site choice in uninformed flies.This work highlights the great potential of RSiena and its utility in the studies of interaction networks among non-human animals.

View Article: PubMed Central - PubMed

Affiliation: Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche ScientifiqueStrasbourg, France; Institut Pluridisciplinaire Hubert Curien, Université de StrasbourgStrasbourg, France.

ABSTRACT
Social learning - the transmission of behaviors through observation or interaction with conspecifics - can be viewed as a decision-making process driven by interactions among individuals. Animal group structures change over time and interactions among individuals occur in particular orders that may be repeated following specific patterns, change in their nature, or disappear completely. Here we used a stochastic actor-oriented model built using the RSiena package in R to estimate individual behaviors and their changes through time, by analyzing the dynamic of the interaction network of the fruit fly Drosophila melanogaster during social learning experiments. In particular, we re-analyzed an experimental dataset where uninformed flies, left free to interact with informed ones, acquired and later used information about oviposition site choice obtained by social interactions. We estimated the degree to which the uninformed flies had successfully acquired the information carried by informed individuals using the proportion of eggs laid by uninformed flies on the medium their conspecifics had been trained to favor. Regardless of the degree of information acquisition measured in uninformed individuals, they always received and started interactions more frequently than informed ones did. However, information was efficiently transmitted (i.e., uninformed flies predominantly laid eggs on the same medium informed ones had learn to prefer) only when the difference in contacts sent between the two fly types was small. Interestingly, we found that the degree of reciprocation, the tendency of individuals to form mutual connections between each other, strongly affected oviposition site choice in uninformed flies. This work highlights the great potential of RSiena and its utility in the studies of interaction networks among non-human animals.

No MeSH data available.


Related in: MedlinePlus