Limits...
Dysfunctional Freezing Responses to Approaching Stimuli in Persons with a Looming Cognitive Style for Physical Threats.

Riskind JH, Sagliano L, Trojano L, Conson M - Front Psychol (2016)

Bottom Line: These participants tended to exhibit more selective and functional freezing responses that occurred only to threatening animals with approach motion; they did not exhibit freezing to neutral stimuli or any stimuli with receding motion.These findings did not appear to be explicable by a general slowing of RTs for the participants with high LCS.Moreover, the LCS factor for concerns about social threats (such as rejection or embarrassment) was not related to differences in freezing; there was also no additional relationship of freezing to behavioral inhibition scores on the Behavioral Inhibition System and the Behavioral Activation System Scales (BIS/BAS).

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, George Mason University Fairfax, VA, USA.

ABSTRACT
Immobilizing freezing responses are associated with anxiety and may be etiologically related to several anxiety disorders. Although recent studies have sought to investigate the underlying mechanisms in freezing responses that are so problematic in many forms of anxiety, cognitive factors related to anxiety have not been investigated. This study was designed to investigate the potential moderating role of a well-documented cognitive vulnerability to anxiety, the Looming Cognitive Style (i.e., LCS; Riskind et al., 2000), which assesses the extent to which individuals tend to routinely interpret ambiguous threats (e.g., physical or social threats) in a biased manner as approaching. We assessed participants' Reaction Times (RTs) when they made judgments about images of animals that differed in threat valence (threat or neutral) and motion direction (approach or recede). As expected, LCS for concerns about the approach of physical dangers appeared to moderate freeze reactions. Individuals who were high on this LCS factor tended to generally exhibit a freeze-response (slower RTs) and this was independent of the threat valence or motion direction of the animals. These general freezing reactions were in stark contrast to those of individuals who were low on the LCS factor for concerns about the approach of physical dangers. These participants tended to exhibit more selective and functional freezing responses that occurred only to threatening animals with approach motion; they did not exhibit freezing to neutral stimuli or any stimuli with receding motion. These findings did not appear to be explicable by a general slowing of RTs for the participants with high LCS. Moreover, the LCS factor for concerns about social threats (such as rejection or embarrassment) was not related to differences in freezing; there was also no additional relationship of freezing to behavioral inhibition scores on the Behavioral Inhibition System and the Behavioral Activation System Scales (BIS/BAS). It may prove fruitful to further explore cognitive factors related to anxiety to develop a more comprehensive understanding of how these factors are associated with anxiety-related freezing responses.

No MeSH data available.


Related in: MedlinePlus

Example of experimental stimuli (threatening: upper row; non-threatening: lower row) and of trial sequence. Frame sequence 1–2 displays approaching stimuli, whereas frame sequence 1–3 displays receding stimuli. Here, images are presented in gray-scale, but they were employed in the natural colored version for the experiment. The trial sequence started with a fixation cross (+), followed by stimuli displaying an approaching or a receding motion. Finally, the stimulus was replaced by an asterisk (*).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835712&req=5

Figure 1: Example of experimental stimuli (threatening: upper row; non-threatening: lower row) and of trial sequence. Frame sequence 1–2 displays approaching stimuli, whereas frame sequence 1–3 displays receding stimuli. Here, images are presented in gray-scale, but they were employed in the natural colored version for the experiment. The trial sequence started with a fixation cross (+), followed by stimuli displaying an approaching or a receding motion. Finally, the stimulus was replaced by an asterisk (*).

Mentions: In order to favor perception of depth, pictures were included in a background consisting of a room with gray-shaded tiled floor and walls in depth perspective. A modified two-frame apparent motion paradigm was used to produce a strong impression of stimulus motion (Sagliano et al., 2014). This paradigm implies that stimuli increasing in size radially outward from an unmoving center provide a visual signal of stimulus approach (Schiff et al., 1962). Thus, presenting two stimuli in rapid succession, differing only in size, apparent approaching (a small stimulus followed by a large stimulus) or receding (a large stimulus followed by a small stimulus) motion can be produced. To further enhance perception of motion we concurrently manipulated both stimulus size and location. Stimuli were displayed on a 19-in. computer screen (approximately 40 cm from the participant) at three different sizes: small (3.5 cm along the widest axis, 5° visual angle), medium (7 cm, 9.9°) and large (14 cm, 19.3°). Medium-size stimuli were always located in the center of the computer screen (position 1), large stimuli were presented 2 cm below the center of the monitor (position 2), and small stimuli 2 cm above the center (position 3; Figure 1). Presenting in rapid succession a medium stimulus in position 1 and then a large stimulus in position 2 the perception of approaching motion was triggered; presenting a medium stimulus in position 1 followed by a small stimulus in position 3 an apparent receding motion was elicited (Figure 1).


Dysfunctional Freezing Responses to Approaching Stimuli in Persons with a Looming Cognitive Style for Physical Threats.

Riskind JH, Sagliano L, Trojano L, Conson M - Front Psychol (2016)

Example of experimental stimuli (threatening: upper row; non-threatening: lower row) and of trial sequence. Frame sequence 1–2 displays approaching stimuli, whereas frame sequence 1–3 displays receding stimuli. Here, images are presented in gray-scale, but they were employed in the natural colored version for the experiment. The trial sequence started with a fixation cross (+), followed by stimuli displaying an approaching or a receding motion. Finally, the stimulus was replaced by an asterisk (*).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835712&req=5

Figure 1: Example of experimental stimuli (threatening: upper row; non-threatening: lower row) and of trial sequence. Frame sequence 1–2 displays approaching stimuli, whereas frame sequence 1–3 displays receding stimuli. Here, images are presented in gray-scale, but they were employed in the natural colored version for the experiment. The trial sequence started with a fixation cross (+), followed by stimuli displaying an approaching or a receding motion. Finally, the stimulus was replaced by an asterisk (*).
Mentions: In order to favor perception of depth, pictures were included in a background consisting of a room with gray-shaded tiled floor and walls in depth perspective. A modified two-frame apparent motion paradigm was used to produce a strong impression of stimulus motion (Sagliano et al., 2014). This paradigm implies that stimuli increasing in size radially outward from an unmoving center provide a visual signal of stimulus approach (Schiff et al., 1962). Thus, presenting two stimuli in rapid succession, differing only in size, apparent approaching (a small stimulus followed by a large stimulus) or receding (a large stimulus followed by a small stimulus) motion can be produced. To further enhance perception of motion we concurrently manipulated both stimulus size and location. Stimuli were displayed on a 19-in. computer screen (approximately 40 cm from the participant) at three different sizes: small (3.5 cm along the widest axis, 5° visual angle), medium (7 cm, 9.9°) and large (14 cm, 19.3°). Medium-size stimuli were always located in the center of the computer screen (position 1), large stimuli were presented 2 cm below the center of the monitor (position 2), and small stimuli 2 cm above the center (position 3; Figure 1). Presenting in rapid succession a medium stimulus in position 1 and then a large stimulus in position 2 the perception of approaching motion was triggered; presenting a medium stimulus in position 1 followed by a small stimulus in position 3 an apparent receding motion was elicited (Figure 1).

Bottom Line: These participants tended to exhibit more selective and functional freezing responses that occurred only to threatening animals with approach motion; they did not exhibit freezing to neutral stimuli or any stimuli with receding motion.These findings did not appear to be explicable by a general slowing of RTs for the participants with high LCS.Moreover, the LCS factor for concerns about social threats (such as rejection or embarrassment) was not related to differences in freezing; there was also no additional relationship of freezing to behavioral inhibition scores on the Behavioral Inhibition System and the Behavioral Activation System Scales (BIS/BAS).

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, George Mason University Fairfax, VA, USA.

ABSTRACT
Immobilizing freezing responses are associated with anxiety and may be etiologically related to several anxiety disorders. Although recent studies have sought to investigate the underlying mechanisms in freezing responses that are so problematic in many forms of anxiety, cognitive factors related to anxiety have not been investigated. This study was designed to investigate the potential moderating role of a well-documented cognitive vulnerability to anxiety, the Looming Cognitive Style (i.e., LCS; Riskind et al., 2000), which assesses the extent to which individuals tend to routinely interpret ambiguous threats (e.g., physical or social threats) in a biased manner as approaching. We assessed participants' Reaction Times (RTs) when they made judgments about images of animals that differed in threat valence (threat or neutral) and motion direction (approach or recede). As expected, LCS for concerns about the approach of physical dangers appeared to moderate freeze reactions. Individuals who were high on this LCS factor tended to generally exhibit a freeze-response (slower RTs) and this was independent of the threat valence or motion direction of the animals. These general freezing reactions were in stark contrast to those of individuals who were low on the LCS factor for concerns about the approach of physical dangers. These participants tended to exhibit more selective and functional freezing responses that occurred only to threatening animals with approach motion; they did not exhibit freezing to neutral stimuli or any stimuli with receding motion. These findings did not appear to be explicable by a general slowing of RTs for the participants with high LCS. Moreover, the LCS factor for concerns about social threats (such as rejection or embarrassment) was not related to differences in freezing; there was also no additional relationship of freezing to behavioral inhibition scores on the Behavioral Inhibition System and the Behavioral Activation System Scales (BIS/BAS). It may prove fruitful to further explore cognitive factors related to anxiety to develop a more comprehensive understanding of how these factors are associated with anxiety-related freezing responses.

No MeSH data available.


Related in: MedlinePlus