Limits...
The Chemical and Genetic Characteristics of Szechuan Pepper (Zanthoxylum bungeanum and Z. armatum) Cultivars and Their Suitable Habitat.

Xiang L, Liu Y, Xie C, Li X, Yu Y, Ye M, Chen S - Front Plant Sci (2016)

Bottom Line: Zanthoxylum bungeanum and Z. armatum are both commonly recognized as Szechuan peppers, but they have different tastes and effects.However, annual precipitation, temperature in January and relevant humidity had a significant positive correlation with the content of non-volatile ether extract in Z. bungeanum.Thus, the most suitable areas for producing Z. bungeanum cultivars ranged from the Hengduan Mountains to the Ta-pa Mountains, and the regions suitable for Z. armatum cultivars were found to be in the Sichuan Basin and Dalou-Wu mountains.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing, China.

ABSTRACT
Szechuan peppers, famous for their unique sensation and flavor, are widely used as a food additive and traditional herbal medicine. Zanthoxylum bungeanum and Z. armatum are both commonly recognized as Szechuan peppers, but they have different tastes and effects. The chemical components, genetic characteristics, and suitable habitat of six cultivars were analyzed in this study. The results indicated that Z. armatum contained a larger proportion of volatile oil, whereas Z. bungeanum produced a more non-volatile ether extraction. The average content of volatile oil and non-volatile ether extract of Z. armatum were 11.84 and 11.63%, respectively, and the average content of volatile oil and non-volatile ether extract of Z. bungeanum were 6.46 and 14.23%, respectively. Combined with an internal transcribed spacer 2 (ITS2) sequence characters and chemical PCA results, six cultivars were classified into their own groups, for the two species in particular. The temperature in January and July were the most significant ecological factors influencing the contents of the Z. armatum volatile oil. However, annual precipitation, temperature in January and relevant humidity had a significant positive correlation with the content of non-volatile ether extract in Z. bungeanum. Thus, the most suitable areas for producing Z. bungeanum cultivars ranged from the Hengduan Mountains to the Ta-pa Mountains, and the regions suitable for Z. armatum cultivars were found to be in the Sichuan Basin and Dalou-Wu mountains. The predicted suitable habitat could be used as a preliminary test area for Szechuan pepper cultivar production.

No MeSH data available.


Variable sites and insertions/deletions for six Szechuan pepper cultivars based on ITS2 sequences. The specific variable sites and deletions are highlighted.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835500&req=5

Figure 3: Variable sites and insertions/deletions for six Szechuan pepper cultivars based on ITS2 sequences. The specific variable sites and deletions are highlighted.

Mentions: The success rates for both DNA extraction and PCR amplification were 100%. The sequencing results indicated that highly-qualified bidirectional trace files were located in the ITS2 regions. The ITS2 sequence lengths for six Szechuan pepper cultivars and their related species ranged from 222 to 227 bp, and the average GC content was 70.29% (Supplementary Table S3). The genetic distances for the ITS2 sequence based on a Kimura 2-Parameter (K2P) model indicated that the minimum interspecific distances for all Szechuan peppers and their related species were higher than those of the maximum intraspecific distances, except in the case of Z. bungeanum (Supplementary Table S4). According to the phylogenetic tree analysis, Z. armatum and Z. bungeanum can be distinguished from each other as well as from the other seven related species based on an ITS2 barcode (Supplementary Figure S1). However, the cultivars could not be distinguished because the cultivars of each species shared same haplotype (Figure 3). Moreover, the sequences characters indicated that single nucleotide polymorphisms (SNPs) provide insight into the species discrimination: the SNPs occurred only at the species level, not in the cultivars (Figure 3, Supplementary Figure S2). For Z. armatum, three unique inserts exited at site29, site165, and site 215, whereas ZA1 had high divergence. Nevertheless, Z. bungeanum had four unique variable sites that exited at site105, site 191, site 197 and site 203 and ZB3 had high divergence. The genetic distances of ZA1 and ZB3 ranged from 0~0.0089 and 0~0.0320, respectively (Supplementary Table S5). Therefore, the genetic variation of ZA1 and ZB3 was higher than other cultivars in each species, and no genetic variation occurred in ZA2, ZB1, ZB2, and ZB4. In other words, ZA2, ZB1, ZB2, and ZB4 were pure cultivars after long-term artificial processes.


The Chemical and Genetic Characteristics of Szechuan Pepper (Zanthoxylum bungeanum and Z. armatum) Cultivars and Their Suitable Habitat.

Xiang L, Liu Y, Xie C, Li X, Yu Y, Ye M, Chen S - Front Plant Sci (2016)

Variable sites and insertions/deletions for six Szechuan pepper cultivars based on ITS2 sequences. The specific variable sites and deletions are highlighted.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835500&req=5

Figure 3: Variable sites and insertions/deletions for six Szechuan pepper cultivars based on ITS2 sequences. The specific variable sites and deletions are highlighted.
Mentions: The success rates for both DNA extraction and PCR amplification were 100%. The sequencing results indicated that highly-qualified bidirectional trace files were located in the ITS2 regions. The ITS2 sequence lengths for six Szechuan pepper cultivars and their related species ranged from 222 to 227 bp, and the average GC content was 70.29% (Supplementary Table S3). The genetic distances for the ITS2 sequence based on a Kimura 2-Parameter (K2P) model indicated that the minimum interspecific distances for all Szechuan peppers and their related species were higher than those of the maximum intraspecific distances, except in the case of Z. bungeanum (Supplementary Table S4). According to the phylogenetic tree analysis, Z. armatum and Z. bungeanum can be distinguished from each other as well as from the other seven related species based on an ITS2 barcode (Supplementary Figure S1). However, the cultivars could not be distinguished because the cultivars of each species shared same haplotype (Figure 3). Moreover, the sequences characters indicated that single nucleotide polymorphisms (SNPs) provide insight into the species discrimination: the SNPs occurred only at the species level, not in the cultivars (Figure 3, Supplementary Figure S2). For Z. armatum, three unique inserts exited at site29, site165, and site 215, whereas ZA1 had high divergence. Nevertheless, Z. bungeanum had four unique variable sites that exited at site105, site 191, site 197 and site 203 and ZB3 had high divergence. The genetic distances of ZA1 and ZB3 ranged from 0~0.0089 and 0~0.0320, respectively (Supplementary Table S5). Therefore, the genetic variation of ZA1 and ZB3 was higher than other cultivars in each species, and no genetic variation occurred in ZA2, ZB1, ZB2, and ZB4. In other words, ZA2, ZB1, ZB2, and ZB4 were pure cultivars after long-term artificial processes.

Bottom Line: Zanthoxylum bungeanum and Z. armatum are both commonly recognized as Szechuan peppers, but they have different tastes and effects.However, annual precipitation, temperature in January and relevant humidity had a significant positive correlation with the content of non-volatile ether extract in Z. bungeanum.Thus, the most suitable areas for producing Z. bungeanum cultivars ranged from the Hengduan Mountains to the Ta-pa Mountains, and the regions suitable for Z. armatum cultivars were found to be in the Sichuan Basin and Dalou-Wu mountains.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing, China.

ABSTRACT
Szechuan peppers, famous for their unique sensation and flavor, are widely used as a food additive and traditional herbal medicine. Zanthoxylum bungeanum and Z. armatum are both commonly recognized as Szechuan peppers, but they have different tastes and effects. The chemical components, genetic characteristics, and suitable habitat of six cultivars were analyzed in this study. The results indicated that Z. armatum contained a larger proportion of volatile oil, whereas Z. bungeanum produced a more non-volatile ether extraction. The average content of volatile oil and non-volatile ether extract of Z. armatum were 11.84 and 11.63%, respectively, and the average content of volatile oil and non-volatile ether extract of Z. bungeanum were 6.46 and 14.23%, respectively. Combined with an internal transcribed spacer 2 (ITS2) sequence characters and chemical PCA results, six cultivars were classified into their own groups, for the two species in particular. The temperature in January and July were the most significant ecological factors influencing the contents of the Z. armatum volatile oil. However, annual precipitation, temperature in January and relevant humidity had a significant positive correlation with the content of non-volatile ether extract in Z. bungeanum. Thus, the most suitable areas for producing Z. bungeanum cultivars ranged from the Hengduan Mountains to the Ta-pa Mountains, and the regions suitable for Z. armatum cultivars were found to be in the Sichuan Basin and Dalou-Wu mountains. The predicted suitable habitat could be used as a preliminary test area for Szechuan pepper cultivar production.

No MeSH data available.