Limits...
Same Performance Changes after Live High-Train Low in Normobaric vs. Hypobaric Hypoxia.

Saugy JJ, Schmitt L, Hauser A, Constantin G, Cejuela R, Faiss R, Wehrlin JP, Rosset J, Robinson N, Millet GP - Front Physiol (2016)

Bottom Line: No difference was found in hematological parameters.The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time.Increases in VO2max and performance enhancement were similar between NH and HH conditions.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland.

ABSTRACT

Purpose: We investigated the changes in physiological and performance parameters after a Live High-Train Low (LHTL) altitude camp in normobaric (NH) or hypobaric hypoxia (HH) to reproduce the actual training practices of endurance athletes using a crossover-designed study.

Methods: Well-trained triathletes (n = 16) were split into two groups and completed two 18-day LTHL camps during which they trained at 1100-1200 m and lived at 2250 m (P i O2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg) under NH (hypoxic chamber; FiO2 18.05 ± 0.03%) or HH (real altitude; barometric pressure 580.2 ± 2.9 mmHg) conditions. The subjects completed the NH and HH camps with a 1-year washout period. Measurements and protocol were identical for both phases of the crossover study. Oxygen saturation (S p O2) was constantly recorded nightly. P i O2 and training loads were matched daily. Blood samples and VO2max were measured before (Pre-) and 1 day after (Post-1) LHTL. A 3-km running-test was performed near sea level before and 1, 7, and 21 days after training camps.

Results: Total hypoxic exposure was lower for NH than for HH during LHTL (230 vs. 310 h; P < 0.001). Nocturnal S p O2 was higher in NH than in HH (92.4 ± 1.2 vs. 91.3 ± 1.0%, P < 0.001). VO2max increased to the same extent for NH and HH (4.9 ± 5.6 vs. 3.2 ± 5.1%). No difference was found in hematological parameters. The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time.

Conclusion: Increases in VO2max and performance enhancement were similar between NH and HH conditions.

No MeSH data available.


Related in: MedlinePlus

Relative change in 3-km run time from Pre- to Post-1, Post-7, and Post-21 as determined on a running track near sea level for the normobaric hypoxia (NH) and hypobaric hypoxia (HH) conditions (in %) for the crossover (n = 16). Data are mean ± standard error *P < 0.05 and ***P < 0.001 for differences with Pre-; $$$P < 0.001 for differences with Post-1; †††P < 0.001 for differences with Post-7.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835493&req=5

Figure 3: Relative change in 3-km run time from Pre- to Post-1, Post-7, and Post-21 as determined on a running track near sea level for the normobaric hypoxia (NH) and hypobaric hypoxia (HH) conditions (in %) for the crossover (n = 16). Data are mean ± standard error *P < 0.05 and ***P < 0.001 for differences with Pre-; $$$P < 0.001 for differences with Post-1; †††P < 0.001 for differences with Post-7.

Mentions: The 3-km performance was significantly increased to a larger extent in the HH group than in the NH group at Post-21 in the first phase of the study (−1.2 ± 2.9 vs. −3.2 ± 3.8%, for NH and HH, P < 0.05). Performance in the second phase (i.e., 2014) increased from Pre- to Post-1 (−3.3 ± 2.0 vs. −3.9 ± 2.9%, for NH and HH, P < 0.01), Post-7 (−2.7 ± 3.1 vs. −2.6 ± 3.6%, for NH and HH, P < 0.05), and Post-21 (−8.4 ± 4.1 vs. −9.1 ± 6.1%, for NH and HH, P < 0.01). Performance increased from Post-1 and Post-7 to Post-21 for both conditions. However, no difference was noted between NH and HH groups at any time. The crossover demonstrated that performance increased from Pre- to Post-1 (–1.92%, P < 0.05) and Post-7 (–2.44%, P < 0.05) for HH but not in NH (–0.97 and -2.27% from Pre- to Post-1 and Post-7, respectively, ns). And it increased from Pre- to Post-21 (P < 0.001), Post-1 to Post-21 (P < 0.001), and Post-7 to Post-21 (P < 0.001) for both conditions. However, no difference was noted between conditions at any time (Figure 3). We found important inter-individual differences between both conditions, i.e., during 2 successive years. For example subject n°1 decreased his performance time at Post-21 by -3.6% in NH vs. -7.4% in HH. Subject n°6 increased his performance time at Post-21 by 1.9% in NH and decreased it by -12.1% in HH.


Same Performance Changes after Live High-Train Low in Normobaric vs. Hypobaric Hypoxia.

Saugy JJ, Schmitt L, Hauser A, Constantin G, Cejuela R, Faiss R, Wehrlin JP, Rosset J, Robinson N, Millet GP - Front Physiol (2016)

Relative change in 3-km run time from Pre- to Post-1, Post-7, and Post-21 as determined on a running track near sea level for the normobaric hypoxia (NH) and hypobaric hypoxia (HH) conditions (in %) for the crossover (n = 16). Data are mean ± standard error *P < 0.05 and ***P < 0.001 for differences with Pre-; $$$P < 0.001 for differences with Post-1; †††P < 0.001 for differences with Post-7.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835493&req=5

Figure 3: Relative change in 3-km run time from Pre- to Post-1, Post-7, and Post-21 as determined on a running track near sea level for the normobaric hypoxia (NH) and hypobaric hypoxia (HH) conditions (in %) for the crossover (n = 16). Data are mean ± standard error *P < 0.05 and ***P < 0.001 for differences with Pre-; $$$P < 0.001 for differences with Post-1; †††P < 0.001 for differences with Post-7.
Mentions: The 3-km performance was significantly increased to a larger extent in the HH group than in the NH group at Post-21 in the first phase of the study (−1.2 ± 2.9 vs. −3.2 ± 3.8%, for NH and HH, P < 0.05). Performance in the second phase (i.e., 2014) increased from Pre- to Post-1 (−3.3 ± 2.0 vs. −3.9 ± 2.9%, for NH and HH, P < 0.01), Post-7 (−2.7 ± 3.1 vs. −2.6 ± 3.6%, for NH and HH, P < 0.05), and Post-21 (−8.4 ± 4.1 vs. −9.1 ± 6.1%, for NH and HH, P < 0.01). Performance increased from Post-1 and Post-7 to Post-21 for both conditions. However, no difference was noted between NH and HH groups at any time. The crossover demonstrated that performance increased from Pre- to Post-1 (–1.92%, P < 0.05) and Post-7 (–2.44%, P < 0.05) for HH but not in NH (–0.97 and -2.27% from Pre- to Post-1 and Post-7, respectively, ns). And it increased from Pre- to Post-21 (P < 0.001), Post-1 to Post-21 (P < 0.001), and Post-7 to Post-21 (P < 0.001) for both conditions. However, no difference was noted between conditions at any time (Figure 3). We found important inter-individual differences between both conditions, i.e., during 2 successive years. For example subject n°1 decreased his performance time at Post-21 by -3.6% in NH vs. -7.4% in HH. Subject n°6 increased his performance time at Post-21 by 1.9% in NH and decreased it by -12.1% in HH.

Bottom Line: No difference was found in hematological parameters.The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time.Increases in VO2max and performance enhancement were similar between NH and HH conditions.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland.

ABSTRACT

Purpose: We investigated the changes in physiological and performance parameters after a Live High-Train Low (LHTL) altitude camp in normobaric (NH) or hypobaric hypoxia (HH) to reproduce the actual training practices of endurance athletes using a crossover-designed study.

Methods: Well-trained triathletes (n = 16) were split into two groups and completed two 18-day LTHL camps during which they trained at 1100-1200 m and lived at 2250 m (P i O2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg) under NH (hypoxic chamber; FiO2 18.05 ± 0.03%) or HH (real altitude; barometric pressure 580.2 ± 2.9 mmHg) conditions. The subjects completed the NH and HH camps with a 1-year washout period. Measurements and protocol were identical for both phases of the crossover study. Oxygen saturation (S p O2) was constantly recorded nightly. P i O2 and training loads were matched daily. Blood samples and VO2max were measured before (Pre-) and 1 day after (Post-1) LHTL. A 3-km running-test was performed near sea level before and 1, 7, and 21 days after training camps.

Results: Total hypoxic exposure was lower for NH than for HH during LHTL (230 vs. 310 h; P < 0.001). Nocturnal S p O2 was higher in NH than in HH (92.4 ± 1.2 vs. 91.3 ± 1.0%, P < 0.001). VO2max increased to the same extent for NH and HH (4.9 ± 5.6 vs. 3.2 ± 5.1%). No difference was found in hematological parameters. The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time.

Conclusion: Increases in VO2max and performance enhancement were similar between NH and HH conditions.

No MeSH data available.


Related in: MedlinePlus