Limits...
Same Performance Changes after Live High-Train Low in Normobaric vs. Hypobaric Hypoxia.

Saugy JJ, Schmitt L, Hauser A, Constantin G, Cejuela R, Faiss R, Wehrlin JP, Rosset J, Robinson N, Millet GP - Front Physiol (2016)

Bottom Line: No difference was found in hematological parameters.The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time.Increases in VO2max and performance enhancement were similar between NH and HH conditions.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland.

ABSTRACT

Purpose: We investigated the changes in physiological and performance parameters after a Live High-Train Low (LHTL) altitude camp in normobaric (NH) or hypobaric hypoxia (HH) to reproduce the actual training practices of endurance athletes using a crossover-designed study.

Methods: Well-trained triathletes (n = 16) were split into two groups and completed two 18-day LTHL camps during which they trained at 1100-1200 m and lived at 2250 m (P i O2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg) under NH (hypoxic chamber; FiO2 18.05 ± 0.03%) or HH (real altitude; barometric pressure 580.2 ± 2.9 mmHg) conditions. The subjects completed the NH and HH camps with a 1-year washout period. Measurements and protocol were identical for both phases of the crossover study. Oxygen saturation (S p O2) was constantly recorded nightly. P i O2 and training loads were matched daily. Blood samples and VO2max were measured before (Pre-) and 1 day after (Post-1) LHTL. A 3-km running-test was performed near sea level before and 1, 7, and 21 days after training camps.

Results: Total hypoxic exposure was lower for NH than for HH during LHTL (230 vs. 310 h; P < 0.001). Nocturnal S p O2 was higher in NH than in HH (92.4 ± 1.2 vs. 91.3 ± 1.0%, P < 0.001). VO2max increased to the same extent for NH and HH (4.9 ± 5.6 vs. 3.2 ± 5.1%). No difference was found in hematological parameters. The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time.

Conclusion: Increases in VO2max and performance enhancement were similar between NH and HH conditions.

No MeSH data available.


Related in: MedlinePlus

Overview of the whole protocol conducted in a crossover design in 2 consecutive years. In horizontal axis the protocol duration of each part in weeks (W) and in vertical axis the testing altitude, including: the 6 months before the lead-in period where the training loads were assessed, the lead-in, the LHTL camp, and the lead-out period. With: 3-km test = the 3-km running tests on the track near sea level made on Pre-, Post-1, Post-7, and Post-21; LHTL = Live High Train Low training camp for normobaric hypoxia (NH) and hypobaric hypoxia (HH). The two dark gray slots before and after the LHTL period correspond to the 2 days of Pre- and Post-tests (i.e., Pre1, Pre2 and Post1, Post2, respectively) at 1150 m.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835493&req=5

Figure 1: Overview of the whole protocol conducted in a crossover design in 2 consecutive years. In horizontal axis the protocol duration of each part in weeks (W) and in vertical axis the testing altitude, including: the 6 months before the lead-in period where the training loads were assessed, the lead-in, the LHTL camp, and the lead-out period. With: 3-km test = the 3-km running tests on the track near sea level made on Pre-, Post-1, Post-7, and Post-21; LHTL = Live High Train Low training camp for normobaric hypoxia (NH) and hypobaric hypoxia (HH). The two dark gray slots before and after the LHTL period correspond to the 2 days of Pre- and Post-tests (i.e., Pre1, Pre2 and Post1, Post2, respectively) at 1150 m.

Mentions: This study includes the first phase of a crossover design published previously (Saugy et al., 2014). Therefore, values presented here are means of the two phases (i.e., 2013 and 2014) of the crossover study unless specified, and more precise details are provided in the statistics section. Many methodological details are reported elsewhere (Saugy et al., 2014), but these details are also outlined here for the reader's convenience. The experimental design was identical to the first phase of the crossover and consisted of a 33-week period divided into four different phases: (1) 24 weeks of training load quantification at sea level; (2) a 3-week lead-in period also at sea level, where the training loads were quantified, and the training sessions were supervised; (3) an 18-day LHTL training camp under NH or HH conditions; and (4) a 3-week post-altitude period at sea level where the training sessions were also supervised and loads quantified (see Figure 1). The two phases were performed exactly during the same period of the competitive season (July) for the 2 consecutive years, with athletes training in the same club under the supervision of the same coaches. Subjects were assigned to the opposite condition (NH or HH) of the condition they underwent during first phase of the study (i.e., in 2013). They were initially matched based on VO2max values that were measured during the Pre-test of the 2013 study. Both groups lived at an altitude of 2250 m under simulated (NH) or real (HH) hypoxic conditions. All subjects trained at an altitude between 1100 and 1200 m. Subjects performed several physiological tests in a well-ventilated laboratory (Prémanon,France, 1150 m) before (Pre-) and immediately after (Post-1) the LHTL camp. Measurements included blood samples, anthropometric measurements, and maximal incremental tests on a cycle ergometer (VO2max). The Pre- and Post-1 tests were performed in the same order at the same time of day with the same materials for both phases of the crossover study. Subjects performed five 3-km running tests at the following times: prior to lead-in, before LHTL (Pre-), 1 day after LHTL (Post-1), 7 days after LHTL (Post-7), and 21 days after LHTL (Post-21), in exactly the same manner for 2013 and 2014. All 3-km running tests were performed near sea level (between 100 and 390 m).


Same Performance Changes after Live High-Train Low in Normobaric vs. Hypobaric Hypoxia.

Saugy JJ, Schmitt L, Hauser A, Constantin G, Cejuela R, Faiss R, Wehrlin JP, Rosset J, Robinson N, Millet GP - Front Physiol (2016)

Overview of the whole protocol conducted in a crossover design in 2 consecutive years. In horizontal axis the protocol duration of each part in weeks (W) and in vertical axis the testing altitude, including: the 6 months before the lead-in period where the training loads were assessed, the lead-in, the LHTL camp, and the lead-out period. With: 3-km test = the 3-km running tests on the track near sea level made on Pre-, Post-1, Post-7, and Post-21; LHTL = Live High Train Low training camp for normobaric hypoxia (NH) and hypobaric hypoxia (HH). The two dark gray slots before and after the LHTL period correspond to the 2 days of Pre- and Post-tests (i.e., Pre1, Pre2 and Post1, Post2, respectively) at 1150 m.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835493&req=5

Figure 1: Overview of the whole protocol conducted in a crossover design in 2 consecutive years. In horizontal axis the protocol duration of each part in weeks (W) and in vertical axis the testing altitude, including: the 6 months before the lead-in period where the training loads were assessed, the lead-in, the LHTL camp, and the lead-out period. With: 3-km test = the 3-km running tests on the track near sea level made on Pre-, Post-1, Post-7, and Post-21; LHTL = Live High Train Low training camp for normobaric hypoxia (NH) and hypobaric hypoxia (HH). The two dark gray slots before and after the LHTL period correspond to the 2 days of Pre- and Post-tests (i.e., Pre1, Pre2 and Post1, Post2, respectively) at 1150 m.
Mentions: This study includes the first phase of a crossover design published previously (Saugy et al., 2014). Therefore, values presented here are means of the two phases (i.e., 2013 and 2014) of the crossover study unless specified, and more precise details are provided in the statistics section. Many methodological details are reported elsewhere (Saugy et al., 2014), but these details are also outlined here for the reader's convenience. The experimental design was identical to the first phase of the crossover and consisted of a 33-week period divided into four different phases: (1) 24 weeks of training load quantification at sea level; (2) a 3-week lead-in period also at sea level, where the training loads were quantified, and the training sessions were supervised; (3) an 18-day LHTL training camp under NH or HH conditions; and (4) a 3-week post-altitude period at sea level where the training sessions were also supervised and loads quantified (see Figure 1). The two phases were performed exactly during the same period of the competitive season (July) for the 2 consecutive years, with athletes training in the same club under the supervision of the same coaches. Subjects were assigned to the opposite condition (NH or HH) of the condition they underwent during first phase of the study (i.e., in 2013). They were initially matched based on VO2max values that were measured during the Pre-test of the 2013 study. Both groups lived at an altitude of 2250 m under simulated (NH) or real (HH) hypoxic conditions. All subjects trained at an altitude between 1100 and 1200 m. Subjects performed several physiological tests in a well-ventilated laboratory (Prémanon,France, 1150 m) before (Pre-) and immediately after (Post-1) the LHTL camp. Measurements included blood samples, anthropometric measurements, and maximal incremental tests on a cycle ergometer (VO2max). The Pre- and Post-1 tests were performed in the same order at the same time of day with the same materials for both phases of the crossover study. Subjects performed five 3-km running tests at the following times: prior to lead-in, before LHTL (Pre-), 1 day after LHTL (Post-1), 7 days after LHTL (Post-7), and 21 days after LHTL (Post-21), in exactly the same manner for 2013 and 2014. All 3-km running tests were performed near sea level (between 100 and 390 m).

Bottom Line: No difference was found in hematological parameters.The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time.Increases in VO2max and performance enhancement were similar between NH and HH conditions.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland.

ABSTRACT

Purpose: We investigated the changes in physiological and performance parameters after a Live High-Train Low (LHTL) altitude camp in normobaric (NH) or hypobaric hypoxia (HH) to reproduce the actual training practices of endurance athletes using a crossover-designed study.

Methods: Well-trained triathletes (n = 16) were split into two groups and completed two 18-day LTHL camps during which they trained at 1100-1200 m and lived at 2250 m (P i O2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg) under NH (hypoxic chamber; FiO2 18.05 ± 0.03%) or HH (real altitude; barometric pressure 580.2 ± 2.9 mmHg) conditions. The subjects completed the NH and HH camps with a 1-year washout period. Measurements and protocol were identical for both phases of the crossover study. Oxygen saturation (S p O2) was constantly recorded nightly. P i O2 and training loads were matched daily. Blood samples and VO2max were measured before (Pre-) and 1 day after (Post-1) LHTL. A 3-km running-test was performed near sea level before and 1, 7, and 21 days after training camps.

Results: Total hypoxic exposure was lower for NH than for HH during LHTL (230 vs. 310 h; P < 0.001). Nocturnal S p O2 was higher in NH than in HH (92.4 ± 1.2 vs. 91.3 ± 1.0%, P < 0.001). VO2max increased to the same extent for NH and HH (4.9 ± 5.6 vs. 3.2 ± 5.1%). No difference was found in hematological parameters. The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time.

Conclusion: Increases in VO2max and performance enhancement were similar between NH and HH conditions.

No MeSH data available.


Related in: MedlinePlus