Limits...
Severe Obesity Shifts Metabolic Thresholds but Does Not Attenuate Aerobic Training Adaptations in Zucker Rats.

Rosa TS, Simões HG, Rogero MM, Moraes MR, Denadai BS, Arida RM, Andrade MS, Silva BM - Front Physiol (2016)

Bottom Line: Velocities of the lactate threshold and glycemic threshold agreed with the maximal lactate steady state velocity on most comparisons.The maximal lactate steady state velocity and maximal velocity were lower in the obese group at pre-training (P < 0.05 vs. lean), increased in both groups at post-training (P < 0.05 vs. pre), but were still lower in the obese group at post-training (P < 0.05 vs. lean).Training-induced increase in maximal lactate steady state, lactate threshold and glycemic threshold velocities was similar between groups (P > 0.05), whereas increase in maximal velocity was greater in the obese group (P < 0.05 vs. lean).

View Article: PubMed Central - PubMed

Affiliation: Graduate Program in Translational Medicine, Federal University of São PauloSão Paulo, Brazil; Graduate Program in Physical Education and Health, Catholic University of BrasíliaBrasília, Brazil.

ABSTRACT
Severe obesity affects metabolism with potential to influence the lactate and glycemic response to different exercise intensities in untrained and trained rats. Here we evaluated metabolic thresholds and maximal aerobic capacity in rats with severe obesity and lean counterparts at pre- and post-training. Zucker rats (obese: n = 10, lean: n = 10) were submitted to constant treadmill bouts, to determine the maximal lactate steady state, and an incremental treadmill test, to determine the lactate threshold, glycemic threshold and maximal velocity at pre and post 8 weeks of treadmill training. Velocities of the lactate threshold and glycemic threshold agreed with the maximal lactate steady state velocity on most comparisons. The maximal lactate steady state velocity occurred at higher percentage of the maximal velocity in Zucker rats at pre-training than the percentage commonly reported and used for training prescription for other rat strains (i.e., 60%) (obese = 78 ± 9% and lean = 68 ± 5%, P < 0.05 vs. 60%). The maximal lactate steady state velocity and maximal velocity were lower in the obese group at pre-training (P < 0.05 vs. lean), increased in both groups at post-training (P < 0.05 vs. pre), but were still lower in the obese group at post-training (P < 0.05 vs. lean). Training-induced increase in maximal lactate steady state, lactate threshold and glycemic threshold velocities was similar between groups (P > 0.05), whereas increase in maximal velocity was greater in the obese group (P < 0.05 vs. lean). In conclusion, lactate threshold, glycemic threshold and maximal lactate steady state occurred at similar exercise intensity in Zucker rats at pre- and post-training. Severe obesity shifted metabolic thresholds to higher exercise intensity at pre-training, but did not attenuate submaximal and maximal aerobic training adaptations.

No MeSH data available.


Related in: MedlinePlus

Intraclass correlation coefficients (ICC) of the lactate threshold (LT) and glycemic threshold (GT) velocities vs. the maximal lactate steady state (MLSS) velocity. All correlations were significant at P < 0.01.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835489&req=5

Figure 5: Intraclass correlation coefficients (ICC) of the lactate threshold (LT) and glycemic threshold (GT) velocities vs. the maximal lactate steady state (MLSS) velocity. All correlations were significant at P < 0.01.

Mentions: Figure 4 shows Bland-Altman plots of the LTv, LTp, GTv, GTp, LTs, Log-log LTs, and Dmax velocities. Data from both groups (i.e., lean and obese) and both moments (i.e., pre and post) were clustered for each variable. Based on the low bias and relatively narrow limits of agreement, the LTv, GTv, LTs, and Log-log LTs velocities showed the best agreement with the MLSS velocity. On the other hand, the GTp and Dmax velocities showed the worst agreement with the MLSS velocity, since its bias was significantly different than zero (Figure 4H). Additionally, the intraclass correlation between the MLSS velocity and the GTv velocity was the greatest, followed, in descending order, by the intraclass correlation with LTv, GTp, Log-log LTs, LTp, LTs, and Dmax velocities (Figure 5). The intraclass correlation between the identification by assessors one and two together and identification by assessor three was 0.89 and 0.98, for LTv and GTv respectively.


Severe Obesity Shifts Metabolic Thresholds but Does Not Attenuate Aerobic Training Adaptations in Zucker Rats.

Rosa TS, Simões HG, Rogero MM, Moraes MR, Denadai BS, Arida RM, Andrade MS, Silva BM - Front Physiol (2016)

Intraclass correlation coefficients (ICC) of the lactate threshold (LT) and glycemic threshold (GT) velocities vs. the maximal lactate steady state (MLSS) velocity. All correlations were significant at P < 0.01.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835489&req=5

Figure 5: Intraclass correlation coefficients (ICC) of the lactate threshold (LT) and glycemic threshold (GT) velocities vs. the maximal lactate steady state (MLSS) velocity. All correlations were significant at P < 0.01.
Mentions: Figure 4 shows Bland-Altman plots of the LTv, LTp, GTv, GTp, LTs, Log-log LTs, and Dmax velocities. Data from both groups (i.e., lean and obese) and both moments (i.e., pre and post) were clustered for each variable. Based on the low bias and relatively narrow limits of agreement, the LTv, GTv, LTs, and Log-log LTs velocities showed the best agreement with the MLSS velocity. On the other hand, the GTp and Dmax velocities showed the worst agreement with the MLSS velocity, since its bias was significantly different than zero (Figure 4H). Additionally, the intraclass correlation between the MLSS velocity and the GTv velocity was the greatest, followed, in descending order, by the intraclass correlation with LTv, GTp, Log-log LTs, LTp, LTs, and Dmax velocities (Figure 5). The intraclass correlation between the identification by assessors one and two together and identification by assessor three was 0.89 and 0.98, for LTv and GTv respectively.

Bottom Line: Velocities of the lactate threshold and glycemic threshold agreed with the maximal lactate steady state velocity on most comparisons.The maximal lactate steady state velocity and maximal velocity were lower in the obese group at pre-training (P < 0.05 vs. lean), increased in both groups at post-training (P < 0.05 vs. pre), but were still lower in the obese group at post-training (P < 0.05 vs. lean).Training-induced increase in maximal lactate steady state, lactate threshold and glycemic threshold velocities was similar between groups (P > 0.05), whereas increase in maximal velocity was greater in the obese group (P < 0.05 vs. lean).

View Article: PubMed Central - PubMed

Affiliation: Graduate Program in Translational Medicine, Federal University of São PauloSão Paulo, Brazil; Graduate Program in Physical Education and Health, Catholic University of BrasíliaBrasília, Brazil.

ABSTRACT
Severe obesity affects metabolism with potential to influence the lactate and glycemic response to different exercise intensities in untrained and trained rats. Here we evaluated metabolic thresholds and maximal aerobic capacity in rats with severe obesity and lean counterparts at pre- and post-training. Zucker rats (obese: n = 10, lean: n = 10) were submitted to constant treadmill bouts, to determine the maximal lactate steady state, and an incremental treadmill test, to determine the lactate threshold, glycemic threshold and maximal velocity at pre and post 8 weeks of treadmill training. Velocities of the lactate threshold and glycemic threshold agreed with the maximal lactate steady state velocity on most comparisons. The maximal lactate steady state velocity occurred at higher percentage of the maximal velocity in Zucker rats at pre-training than the percentage commonly reported and used for training prescription for other rat strains (i.e., 60%) (obese = 78 ± 9% and lean = 68 ± 5%, P < 0.05 vs. 60%). The maximal lactate steady state velocity and maximal velocity were lower in the obese group at pre-training (P < 0.05 vs. lean), increased in both groups at post-training (P < 0.05 vs. pre), but were still lower in the obese group at post-training (P < 0.05 vs. lean). Training-induced increase in maximal lactate steady state, lactate threshold and glycemic threshold velocities was similar between groups (P > 0.05), whereas increase in maximal velocity was greater in the obese group (P < 0.05 vs. lean). In conclusion, lactate threshold, glycemic threshold and maximal lactate steady state occurred at similar exercise intensity in Zucker rats at pre- and post-training. Severe obesity shifted metabolic thresholds to higher exercise intensity at pre-training, but did not attenuate submaximal and maximal aerobic training adaptations.

No MeSH data available.


Related in: MedlinePlus