Limits...
Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery.

Yeung TW, Üçok EF, Tiani KA, McClements DJ, Sela DA - Front Microbiol (2016)

Bottom Line: Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage.Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery.Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions.

View Article: PubMed Central - PubMed

Affiliation: Department of Food Science, University of Massachusetts Amherst, MA, USA.

ABSTRACT
Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions.

No MeSH data available.


Related in: MedlinePlus

Optical microscope images of (A) Bifidobacterium longum subsp. infantis UMA 300 (20×), (B) unfilled alginate bead (20×), (C) filled alginate bead with B. longum subsp. longum UMA 306 (20×), (D) B. longum subsp. longum UMA 318 (20×), (E) unfilled chitosan-coated alginate bead (20×), (F) filled chitosan-coated alginate bead with B. longum subsp. infantis UMA 299 (20×). Scale bars represent 100 μm.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835488&req=5

Figure 1: Optical microscope images of (A) Bifidobacterium longum subsp. infantis UMA 300 (20×), (B) unfilled alginate bead (20×), (C) filled alginate bead with B. longum subsp. longum UMA 306 (20×), (D) B. longum subsp. longum UMA 318 (20×), (E) unfilled chitosan-coated alginate bead (20×), (F) filled chitosan-coated alginate bead with B. longum subsp. infantis UMA 299 (20×). Scale bars represent 100 μm.

Mentions: The structures of samples containing free cells or bacterial-loaded microgels were determined using optical microscopy immediately after encapsulation (Figure 1). Free cells appeared rod-shaped as expected for bifidobacteria (Figures 1A,D). The unfilled alginate and chitosan-coated alginate microgels were similar in morphology, although the individual coated alginate beads did appear larger than the uncoated ones, which is consistent with the particle size analysis (Figures 1C,F). Encapsulated bifidobacteria were clearly visualized within the microgels for both alginate and chitosan-coated alginate microgels (Figures 1E,F). The bifidobacterial-loaded alginate and chitosan-coated alginate beads had a similar external appearance as the equivalent unloaded beads. The microgels were generally spherical with diameters around 100–300 μm for all samples.


Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery.

Yeung TW, Üçok EF, Tiani KA, McClements DJ, Sela DA - Front Microbiol (2016)

Optical microscope images of (A) Bifidobacterium longum subsp. infantis UMA 300 (20×), (B) unfilled alginate bead (20×), (C) filled alginate bead with B. longum subsp. longum UMA 306 (20×), (D) B. longum subsp. longum UMA 318 (20×), (E) unfilled chitosan-coated alginate bead (20×), (F) filled chitosan-coated alginate bead with B. longum subsp. infantis UMA 299 (20×). Scale bars represent 100 μm.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835488&req=5

Figure 1: Optical microscope images of (A) Bifidobacterium longum subsp. infantis UMA 300 (20×), (B) unfilled alginate bead (20×), (C) filled alginate bead with B. longum subsp. longum UMA 306 (20×), (D) B. longum subsp. longum UMA 318 (20×), (E) unfilled chitosan-coated alginate bead (20×), (F) filled chitosan-coated alginate bead with B. longum subsp. infantis UMA 299 (20×). Scale bars represent 100 μm.
Mentions: The structures of samples containing free cells or bacterial-loaded microgels were determined using optical microscopy immediately after encapsulation (Figure 1). Free cells appeared rod-shaped as expected for bifidobacteria (Figures 1A,D). The unfilled alginate and chitosan-coated alginate microgels were similar in morphology, although the individual coated alginate beads did appear larger than the uncoated ones, which is consistent with the particle size analysis (Figures 1C,F). Encapsulated bifidobacteria were clearly visualized within the microgels for both alginate and chitosan-coated alginate microgels (Figures 1E,F). The bifidobacterial-loaded alginate and chitosan-coated alginate beads had a similar external appearance as the equivalent unloaded beads. The microgels were generally spherical with diameters around 100–300 μm for all samples.

Bottom Line: Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage.Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery.Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions.

View Article: PubMed Central - PubMed

Affiliation: Department of Food Science, University of Massachusetts Amherst, MA, USA.

ABSTRACT
Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions.

No MeSH data available.


Related in: MedlinePlus