Limits...
Shigella Diversity and Changing Landscape: Insights for the Twenty-First Century.

Anderson M, Sansonetti PJ, Marteyn BS - Front Cell Infect Microbiol (2016)

Bottom Line: Shigella is a pathovar of Escherichia coli comprising four groups, Shigella flexneri, Shigella sonnei, Shigella dysenteriae, and Shigella boydii, each of them, with the exception of S.sonnei, comprising several serotypes.Host-cell invasion is the final step of the infection process, as Shigella's virulence strategy relies also on its ability to survive hostile conditions during its journey through the gastro-intestinal tract, to compete with the host microbiota and to cross the intestinal mucus layer.The recent development of high-throughput screening and sequencing methods will facilitate these complex comparison studies.

View Article: PubMed Central - PubMed

Affiliation: Institut Pasteur, Unité de Pathogénie Microbienne MoléculaireParis, France; Institut National de la Santé et de la Recherche Médicale, Unité 786Paris, France.

ABSTRACT
Shigella is a pathovar of Escherichia coli comprising four groups, Shigella flexneri, Shigella sonnei, Shigella dysenteriae, and Shigella boydii, each of them, with the exception of S.sonnei, comprising several serotypes. Shigella accounts for the majority of dysentery causing infections occurring world-wide each year. Recent advancements in the Shigella field have led to a better understanding of the molecular mechanisms underlying host epithelial cell invasion and immune cell function manipulation, mainly using S. flexneri as a model. Host-cell invasion is the final step of the infection process, as Shigella's virulence strategy relies also on its ability to survive hostile conditions during its journey through the gastro-intestinal tract, to compete with the host microbiota and to cross the intestinal mucus layer. Hence, the diversity of the virulence strategies among the different Shigella species has not yet been deeply investigated, which might be an important step to understand the epidemiological spreading of Shigella species worldwide and a key aspect for the validation of novel vaccine candidates. The recent development of high-throughput screening and sequencing methods will facilitate these complex comparison studies. In this review we discuss several of the major avenues that the Shigella research field has taken over the past few years and hopefully gain some insights into the questions that remain surrounding this important human pathogen.

No MeSH data available.


Related in: MedlinePlus

Comparison of selected Shigella O-antigen side chains. Schematic of repeated O-antigen side chains from serotypes S. sonnei (Gamian and Romanowska, 1982), S. flexneri 5a (Perepelov et al., 2010), S. dysenteriae 1 (Dmitriev et al., 1976), and S. boydii 6 (Senchenkova et al., 2005). Figure legend abreviations are as follows 2-Acetamido-2-deoxy-D-glucose (D-GlcNAc), 2-Acetamido-2-deoxy-L-altruronic acid (L-AltNAc), 2-Acetamido-4-amino-2, 4-dideoxy-D-fucose (D-FucNAc), 2-Acetamido-2-deoxy-D-galacturonic acid (D-GalNAc), D-Galactopyranose (D-Gal), D-Mannose (D-Man), L-Rhamnose (L-Rha), D-Glucose (D-Glc), O-acetyl (Ac).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835486&req=5

Figure 1: Comparison of selected Shigella O-antigen side chains. Schematic of repeated O-antigen side chains from serotypes S. sonnei (Gamian and Romanowska, 1982), S. flexneri 5a (Perepelov et al., 2010), S. dysenteriae 1 (Dmitriev et al., 1976), and S. boydii 6 (Senchenkova et al., 2005). Figure legend abreviations are as follows 2-Acetamido-2-deoxy-D-glucose (D-GlcNAc), 2-Acetamido-2-deoxy-L-altruronic acid (L-AltNAc), 2-Acetamido-4-amino-2, 4-dideoxy-D-fucose (D-FucNAc), 2-Acetamido-2-deoxy-D-galacturonic acid (D-GalNAc), D-Galactopyranose (D-Gal), D-Mannose (D-Man), L-Rhamnose (L-Rha), D-Glucose (D-Glc), O-acetyl (Ac).

Mentions: Shigella encompasses four subgroups (S. flexneri, S. sonnei, S, dysenteriae, and S. boydii), each composed of different serotypes, which are identified based on the structure of the lipopolysaccharide O-antigen repeats: S. dysenteriae encompasses 15 serotypes, S. flexneri, 14 serotypes, S. boydii, 20 serotypes, and S. sonnei a single serotype (Figure 1; reviewed in Marteyn et al., 2012). Chantemesse and Widal first described the bacillus causing non-amoebic dysentery in 1888, while Shiga first identified S. dysenteriae in 1898 (Shiga, 1898). Flexner first characterized S. flexneri in 1900 and S. sonnei was isolated and characterized by Sonne (1915). S. boydii was first described by Boyd in 1931.


Shigella Diversity and Changing Landscape: Insights for the Twenty-First Century.

Anderson M, Sansonetti PJ, Marteyn BS - Front Cell Infect Microbiol (2016)

Comparison of selected Shigella O-antigen side chains. Schematic of repeated O-antigen side chains from serotypes S. sonnei (Gamian and Romanowska, 1982), S. flexneri 5a (Perepelov et al., 2010), S. dysenteriae 1 (Dmitriev et al., 1976), and S. boydii 6 (Senchenkova et al., 2005). Figure legend abreviations are as follows 2-Acetamido-2-deoxy-D-glucose (D-GlcNAc), 2-Acetamido-2-deoxy-L-altruronic acid (L-AltNAc), 2-Acetamido-4-amino-2, 4-dideoxy-D-fucose (D-FucNAc), 2-Acetamido-2-deoxy-D-galacturonic acid (D-GalNAc), D-Galactopyranose (D-Gal), D-Mannose (D-Man), L-Rhamnose (L-Rha), D-Glucose (D-Glc), O-acetyl (Ac).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835486&req=5

Figure 1: Comparison of selected Shigella O-antigen side chains. Schematic of repeated O-antigen side chains from serotypes S. sonnei (Gamian and Romanowska, 1982), S. flexneri 5a (Perepelov et al., 2010), S. dysenteriae 1 (Dmitriev et al., 1976), and S. boydii 6 (Senchenkova et al., 2005). Figure legend abreviations are as follows 2-Acetamido-2-deoxy-D-glucose (D-GlcNAc), 2-Acetamido-2-deoxy-L-altruronic acid (L-AltNAc), 2-Acetamido-4-amino-2, 4-dideoxy-D-fucose (D-FucNAc), 2-Acetamido-2-deoxy-D-galacturonic acid (D-GalNAc), D-Galactopyranose (D-Gal), D-Mannose (D-Man), L-Rhamnose (L-Rha), D-Glucose (D-Glc), O-acetyl (Ac).
Mentions: Shigella encompasses four subgroups (S. flexneri, S. sonnei, S, dysenteriae, and S. boydii), each composed of different serotypes, which are identified based on the structure of the lipopolysaccharide O-antigen repeats: S. dysenteriae encompasses 15 serotypes, S. flexneri, 14 serotypes, S. boydii, 20 serotypes, and S. sonnei a single serotype (Figure 1; reviewed in Marteyn et al., 2012). Chantemesse and Widal first described the bacillus causing non-amoebic dysentery in 1888, while Shiga first identified S. dysenteriae in 1898 (Shiga, 1898). Flexner first characterized S. flexneri in 1900 and S. sonnei was isolated and characterized by Sonne (1915). S. boydii was first described by Boyd in 1931.

Bottom Line: Shigella is a pathovar of Escherichia coli comprising four groups, Shigella flexneri, Shigella sonnei, Shigella dysenteriae, and Shigella boydii, each of them, with the exception of S.sonnei, comprising several serotypes.Host-cell invasion is the final step of the infection process, as Shigella's virulence strategy relies also on its ability to survive hostile conditions during its journey through the gastro-intestinal tract, to compete with the host microbiota and to cross the intestinal mucus layer.The recent development of high-throughput screening and sequencing methods will facilitate these complex comparison studies.

View Article: PubMed Central - PubMed

Affiliation: Institut Pasteur, Unité de Pathogénie Microbienne MoléculaireParis, France; Institut National de la Santé et de la Recherche Médicale, Unité 786Paris, France.

ABSTRACT
Shigella is a pathovar of Escherichia coli comprising four groups, Shigella flexneri, Shigella sonnei, Shigella dysenteriae, and Shigella boydii, each of them, with the exception of S.sonnei, comprising several serotypes. Shigella accounts for the majority of dysentery causing infections occurring world-wide each year. Recent advancements in the Shigella field have led to a better understanding of the molecular mechanisms underlying host epithelial cell invasion and immune cell function manipulation, mainly using S. flexneri as a model. Host-cell invasion is the final step of the infection process, as Shigella's virulence strategy relies also on its ability to survive hostile conditions during its journey through the gastro-intestinal tract, to compete with the host microbiota and to cross the intestinal mucus layer. Hence, the diversity of the virulence strategies among the different Shigella species has not yet been deeply investigated, which might be an important step to understand the epidemiological spreading of Shigella species worldwide and a key aspect for the validation of novel vaccine candidates. The recent development of high-throughput screening and sequencing methods will facilitate these complex comparison studies. In this review we discuss several of the major avenues that the Shigella research field has taken over the past few years and hopefully gain some insights into the questions that remain surrounding this important human pathogen.

No MeSH data available.


Related in: MedlinePlus