Limits...
Brown Adipose Tissue Is Linked to a Distinct Thermoregulatory Response to Mild Cold in People.

Chondronikola M, Volpi E, Børsheim E, Chao T, Porter C, Annamalai P, Yfanti C, Labbe SM, Hurren NM, Malagaris I, Cesani F, Sidossis LS - Front Physiol (2016)

Bottom Line: BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity.BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering.The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted.

View Article: PubMed Central - PubMed

Affiliation: Metabolism Unit, Shriners Hospitals for Children-GalvestonTX, USA; Department of Preventive Medicine and Community Health, University of Texas Medical BranchGalveston, TX, USA; Division of Rehabilitation Sciences, Department of Nutrition and Metabolism, University of Texas Medical BranchGalveston, TX, USA; Department of Nutrition and Dietetics, Harokopio University of AthensGreece.

ABSTRACT
Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT-) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold exposure protocol. BAT was quantified using positron emission tomography/computed tomography. Body core and skin temperatures were measured using a telemetric pill and wireless thermistors, respectively. Core body temperature decreased during cold exposure in the BAT- group only (-0.34°C, 95% CI: -0.6 to -0.1, p = 0.03), while the cold-induced change in core temperature was significantly different between BAT+ and BAT- subjects (BAT+ vs. BAT-, 0.43°C, 95% CI: 0.20-0.65, p = 0.0014). BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity. Compared to the BAT- group, BAT+ subjects tolerated a lower ambient temperature (BAT-: 20.6 ± 0.3°C vs. BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering. The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted. These results demonstrate a physiologically significant role for BAT in thermoregulation in people. This trial has been registered with Clinaltrials.gov: NCT01791114 (https://clinicaltrials.gov/ct2/show/NCT01791114).

No MeSH data available.


Related in: MedlinePlus

Brown adipose tissue (BAT), cold exposure (CE) tolerance, and thermal sensation. (A) Mean standardized uptake value (SUV) for glucose in various tissues at 6 h of CE. SQAT, subcutaneous adipose tissue; VAT, visceral adipose tissue. (B) Thermal sensation in subjects with detectable BAT (BAT+) and without detectable BAT (BAT−) at 5 h of CE. (C) Cooling garments temperature in BAT+ and BAT− subjects at 5 h of CE. (D) Ambient room temperature in BAT+ and BAT− subjects at 5 h of CE. The data are means and standard deviations. *p = 0.035 using Mann–Whitney test and ***p = 0.001 using paired t-test.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835478&req=5

Figure 2: Brown adipose tissue (BAT), cold exposure (CE) tolerance, and thermal sensation. (A) Mean standardized uptake value (SUV) for glucose in various tissues at 6 h of CE. SQAT, subcutaneous adipose tissue; VAT, visceral adipose tissue. (B) Thermal sensation in subjects with detectable BAT (BAT+) and without detectable BAT (BAT−) at 5 h of CE. (C) Cooling garments temperature in BAT+ and BAT− subjects at 5 h of CE. (D) Ambient room temperature in BAT+ and BAT− subjects at 5 h of CE. The data are means and standard deviations. *p = 0.035 using Mann–Whitney test and ***p = 0.001 using paired t-test.

Mentions: The study participants followed an individualized CE protocol to maximally induce non-shivering thermogenesis (i.e., ambient and garment water temperatures were adjusted to the lowest level tolerated by each subject without shivering). As expected, the results of the 18F-FDG-PET/CT analyses support that the BAT+ group demonstrated higher BAT metabolic activity compared to BAT− subjects. No significant differences were observed in the other tissues between BAT+ and BAT− subjects (Figure 2A).


Brown Adipose Tissue Is Linked to a Distinct Thermoregulatory Response to Mild Cold in People.

Chondronikola M, Volpi E, Børsheim E, Chao T, Porter C, Annamalai P, Yfanti C, Labbe SM, Hurren NM, Malagaris I, Cesani F, Sidossis LS - Front Physiol (2016)

Brown adipose tissue (BAT), cold exposure (CE) tolerance, and thermal sensation. (A) Mean standardized uptake value (SUV) for glucose in various tissues at 6 h of CE. SQAT, subcutaneous adipose tissue; VAT, visceral adipose tissue. (B) Thermal sensation in subjects with detectable BAT (BAT+) and without detectable BAT (BAT−) at 5 h of CE. (C) Cooling garments temperature in BAT+ and BAT− subjects at 5 h of CE. (D) Ambient room temperature in BAT+ and BAT− subjects at 5 h of CE. The data are means and standard deviations. *p = 0.035 using Mann–Whitney test and ***p = 0.001 using paired t-test.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835478&req=5

Figure 2: Brown adipose tissue (BAT), cold exposure (CE) tolerance, and thermal sensation. (A) Mean standardized uptake value (SUV) for glucose in various tissues at 6 h of CE. SQAT, subcutaneous adipose tissue; VAT, visceral adipose tissue. (B) Thermal sensation in subjects with detectable BAT (BAT+) and without detectable BAT (BAT−) at 5 h of CE. (C) Cooling garments temperature in BAT+ and BAT− subjects at 5 h of CE. (D) Ambient room temperature in BAT+ and BAT− subjects at 5 h of CE. The data are means and standard deviations. *p = 0.035 using Mann–Whitney test and ***p = 0.001 using paired t-test.
Mentions: The study participants followed an individualized CE protocol to maximally induce non-shivering thermogenesis (i.e., ambient and garment water temperatures were adjusted to the lowest level tolerated by each subject without shivering). As expected, the results of the 18F-FDG-PET/CT analyses support that the BAT+ group demonstrated higher BAT metabolic activity compared to BAT− subjects. No significant differences were observed in the other tissues between BAT+ and BAT− subjects (Figure 2A).

Bottom Line: BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity.BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering.The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted.

View Article: PubMed Central - PubMed

Affiliation: Metabolism Unit, Shriners Hospitals for Children-GalvestonTX, USA; Department of Preventive Medicine and Community Health, University of Texas Medical BranchGalveston, TX, USA; Division of Rehabilitation Sciences, Department of Nutrition and Metabolism, University of Texas Medical BranchGalveston, TX, USA; Department of Nutrition and Dietetics, Harokopio University of AthensGreece.

ABSTRACT
Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT-) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold exposure protocol. BAT was quantified using positron emission tomography/computed tomography. Body core and skin temperatures were measured using a telemetric pill and wireless thermistors, respectively. Core body temperature decreased during cold exposure in the BAT- group only (-0.34°C, 95% CI: -0.6 to -0.1, p = 0.03), while the cold-induced change in core temperature was significantly different between BAT+ and BAT- subjects (BAT+ vs. BAT-, 0.43°C, 95% CI: 0.20-0.65, p = 0.0014). BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity. Compared to the BAT- group, BAT+ subjects tolerated a lower ambient temperature (BAT-: 20.6 ± 0.3°C vs. BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering. The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted. These results demonstrate a physiologically significant role for BAT in thermoregulation in people. This trial has been registered with Clinaltrials.gov: NCT01791114 (https://clinicaltrials.gov/ct2/show/NCT01791114).

No MeSH data available.


Related in: MedlinePlus